

## EXECUTIVE SUMMARY

Tooele City continues to see rapid growth with the development of the Overlake area and many other residential and commercial developments. Tooele is located in Tooele County, Utah, about 8 miles south of I-80 along SR-36. Tooele is south of Stansbury park and southeast of Grantsville, and Tooele City itself is surrounded by unincorporated Tooele County.

The purpose of this Transportation Master Plan (TMP) is to provide a supplement for the transportation element of the General Plan and to plan for the future multi-modal transportation needs of Tooele City given the current future land use plans. The following are the key findings of this transportation master plan (TMP):

## Tooele Characteristics

The population in Tooele has grown rapidly in recent years, more than doubling itself since 1990 to a current population of approximately 35,300 people (2018). There are over 10,000 households in the City. The average commute time for residents is approximately 30 minutes.

## Roadway Network

All City roadways, with the exception of 1000 North to the east of the 1000 North (SR-112) / Main Street (SR-36) intersection, are currently operating at acceptable levels of service. Some segments of SR-36 are operating poorly. UDOT is already planning additional widening on SR-36 but will need to also plan for widening on SR-112 between Main Street (SR-36) and Utah Avenue.

Future traffic volumes were estimated using development projections and proximity to regional attractions. It is anticipated that City roadways such as Utah Avenue, 1000 North, and 2000 North will operate poorly in full-build conditions. Planned and proposed projects for UDOT roadways are listed in the report. A map of the proposed future roadway network in 2040 conditions is shown in Figure ES-1 and typical cross sections are shown in Figures 3 through 7.

## Alternative Modes

The existing transit system includes one bus route and three flex bus routes. Future transit projects are currently being studied.

The City has existing bike lanes on Vine Street, 1000 North, and 100 East Future recommendations for bike routes include continuing the bike facilities on Vine Street and 100 East and constructing new facilities on 400 West and Droubay Road, as well as a trail along the west edge of the City.

tooele City

## AcKNOWLEDGEMENTS

## Tooele City

Steve Evans, Public Works Director
Paul Hansen, City Engineer
Jim Bolser, Community Development Director
Andrew Aagard, City Planner/Zoning Administrator

Tooele Mayor \& City Council
Debbie Winn, Mayor
Justin Brady, City Council
Melodi Gochis, City Council
Tony Graf, City Council
Ed Hansen, City Council
Maresa Manzione, City Council

## Tooele Planning Commission

Tyson Hamilton
Chris Sloan
Matt Robinson
Melanie Hammer
Shauna Bevan
Nathan Thomas
Dave McCall
Paul Smith
Weston Jensen

Consultant Team - Hales Engineering (See Appendix C)
Ryan Hales, PE, PTOE, AICP
Josh Gibbons, EIT
Joseph Browning, EIT

## TABLE OF CONTENTS

Acknowledgements ..... iii
I. Introduction ..... 1
A. Overview ..... 1
II. Tooele Characteristics ..... 3
A. Purpose ..... 3
B. Land Use ..... 3
C. Demographics ..... 3
III. Roadway Network ..... 5
A. Purpose ..... 5
B. Functional Classification ..... 5
C. Level of Service Analysis ..... 8
D. Existing Conditions ..... 11
E. Future Conditions ..... 18
F. Truck Routes ..... 27
IV. Alternative Modes of Transportation ..... 30
A. Purpose ..... 30
B. Public Transit ..... 30
C. Active Transportation ..... 30
V. Safety ..... 35
A. Purpose ..... 35
B. Safety Hotspots ..... 35
C. Traffic Calming ..... 36
D. Access Management ..... 42
VI. Conclusion ..... 45
A. Overview ..... 45
B. Next Steps ..... 45
APPENDIX A: Traffic Volume Data Collection ..... 46
APPENDIX B: LOS and Queueing Results ..... 47
APPENDIX C: Hales Engineering ..... 48

## LIST OF TABLES

Table 1: Roadway Classifications ..... 6
Table 2: Level of Service Descriptions ..... 8
Table 3: Roadway Capacities ..... 10
Table 4: Intersection LOS Criteria ..... 11
Table 5: Existing Evening Peak Hour Intersection Level of Service ..... 17
Table 6: Recommended Improvement Projects ..... 24
Table 7: Access Management Spacing Recommendations ..... 43
LIST OF FIGURES
Figure 1: Vicinity map ..... 2
Figure 2: Tooele mode split ..... 4
Figure 3: Principal arterial cross-section ..... 6
Figure 4: Arterial cross-section ..... 6
Figure 5: Major collector cross-section ..... 7
Figure 6: Minor collector cross-section ..... 7
Figure 7: Local street cross-section ..... 7
Figure 8: Visual representation of LOS ..... 9
Figure 9: Existing roadway network ..... 12
Figure 10: Existing ADT and LOS ..... 14
Figure 11: Existing (2020) evening peak hour traffic volumes ..... 15
Figure 12: Existing (2020) evening peak hour intersection LOS ..... 19
Figure 13: Future land use map ..... 20
Figure 14: Future no-build LOS. ..... 23
Figure 15: Future projects ..... 25
Figure 16: Future roadway network ..... 26
Figure 17: Future full-build LOS ..... 28
Figure 18: Truck routes ..... 29
Figure 19: Public transit route map ..... 32
Figure 20: Bike routes ..... 33
Figure 21: Bike treatments ..... 34
Figure 22: Driver feedback sign ..... 36
Figure 23: Lane striping ..... 37
Figure 24: Speed legend ..... 38
Figure 25: Traffic circle ..... 38
Figure 26: Chicane ..... 39
Figure 27: Lateral shift ..... 40
Figure 28: Bulb-out ..... 40
Figure 29: Choker ..... 41
Figure 30: Raised pedestrian crossing ..... 42
Figure 31: Offset diagram ..... 44

## I. Introduction

## A. Overview

Since being incorporated as a town in 1853, Tooele City has experienced rapid growth, particularly in recent years, growing into a city with a population of nearly 35,000 people. With this growth comes many challenges and opportunities to provide safe and efficient transportation for the citizens of Tooele.

The City continues to see rapid growth with the development of the Overlake area and many other residential and commercial developments. With a high number of residents traveling in and out of the City to commute to work during peak hours, there are existing challenges with transportation in the City. The purpose of this Transportation Master Plan (TMP) is to plan for the multi-modal transportation needs of Tooele City, accounting for the projected future
 growth.

Tooele is located in Tooele County, Utah, about 8 miles south of I-80. Tooele is located near Stansbury Park to the north and Grantsville to the northwest. Surrounding the rest of Tooele is unincorporated Tooele County. A vicinity map of Tooele City is shown in Figure 1.


The Tooele City TMP is being updated with the most current land use plans. Because of large and often unpredictable growth in the City, it is necessary to update this TMP periodically. The most recent TMP was completed in November 2010. This TMP is an update to the previous plan and is included within the updated Tooele City General Plan as the transportation element of that plan.

Key to planning for Tooele's transportation needs is an understanding of the city's goals and policies related to transportation. The other portions of the General Plan include future land use and development plans and goals in the City and how those will be achieved. This TMP provides details regarding the City's transportation needs, including future demand and improvements, to meet the goals outlined by the City. The TMP expands the vision for the General Plan into actionable mobility-related goals and objectives to guide Tooele's near- and longterm transportation investments.


## II. Tooele Characteristics

## A. Purpose

The purpose of this section is to discuss the existing and future planned land use and demographics of Tooele City. The land use and demographics characteristics were considered in developing future transportation demand projections and determining future transportation needs in the City.

## B. LAND Use

+ 

This section discusses plans for existing and future land use in Tooele City. Land use is a good predictor of transportation trends and demand. Therefore, it is important to identify existing and future land use when planning for transportation needs. There are several parcels on the outside edges of the City that are anticipated to experience development in the near future, especially north of 1000 North (SR-112). Other areas that already have some developed land will experience in-fill development projects that will increase the density of land uses.

## 1. Existing

Most of Tooele City currently consists of residential uses with nearly 11,000 current households in the City. Existing commercial and office developments are primarily located along the SR-36 corridor. There are also several industrial establishments, which are located on the west side of the City near the Army Depot. Other land uses that are currently located in the City are K-12 public schools, City and County buildings, religious buildings, and medical care facilities.

## 2. Future

In preparation to complete this TMP, Tooele City staff summarized the projects and land that are anticipated to develop in the next twenty years and beyond to help determine future transportation demand in the City.

## C. DEMOGRAPHICS

This section discusses the demographics of Tooele City and provides helpful information about how people live, work, and play. These characteristics have a direct impact on the transportation needs of the City. The existing demographics data come primarily from U.S. Census data, including the American Community Survey results.

## 1. Population



The population in Tooele City has grown rapidly in recent years, more than doubling from 1990 to the present. According to the U.S. Census the population in 2010 was 30,167 . It is estimated that the population in 2021 is approximately 37,000 . The median age of the

## Population: <br> 37,000

 population is approximately 31 years, and approximately 31 percent of the population is 18 years or younger.
## 2. Households

0Similar growth has occurred for the number of households in Tooele. According to the U.S. Census, the number of households in Tooele was 7,459 in the year 2000. The estimate for households was approximately 10,096 in 2010 and 10,731 in 2018. Therefore, it is estimated that there are approximately 3.1 persons per household.

Approximately 75 percent of homes are single-family detached units, and the rest are apartments, condos, townhomes, mobile homes, etc. Approximately 29 percent of the homes have been built since the year 2000. Related to transportation demand, approximately 96 percent of households have at least

## Households (2018): 10,731

 one vehicle available for use, and approximately one-third of households have at least three vehicles.
## 3. Employment \& Journey to Work



As of 2018, over 24,000 Tooele residents were employed, and the median household income was $\$ 68,000$. Unlike population, the employment opportunities within the City have not seen significant growth until the last few years. Tooele has seen an increase in regional retail developments along Main Street (SR-36) between 1000 North and 2000 North. Approximately 40\% of residents work outside of Tooele County.

Data were collected from the U.S. Census American Community Survey results for Tooele to determine the mode split in the City. The recent mode split in the City based on survey results from 2014 to 2018 is shown in Figure 2.

## Avg. Commute: <br> 28.6 min .



## Figure 2: Tooele mode split

As shown, approximately three-fourths of workers drive alone in a personal vehicle to work. Approximately 17 percent carpool and 1.4 percent ride transit. It is anticipated that as transit, pedestrian, and bicycle facilities improve in the city the percentage of personal vehicle usage for commuting will decrease. Approximately 30 percent of workers leave between 7:00 and 9:00 a.m. to travel to work. The average commute time to work for Tooele residents is 28.6 minutes.

## III. Roadway Network

## A. Purpose

The purpose of this chapter is to discuss the characteristics and needs of the existing and future roadway networks. Recommendations for future improvements are discussed as well, based on the future projections. The analysis methodologies and models that were used are also discussed.

## B. FUNCTIONAL CLASSIFICATION



Roads are categorized into a hierarchal system and given a functional classification based on right-of-way (ROW) width. The higher a street classification, the more mobility it provides with limited access. Lower street classifications have less mobility, but more access. The four classifications defined in the Tooele City code are arterials, major collectors, minor collectors, and local streets.

The following are the four typical street classifications for Tooele City roadways:


- Arterial - Arterials are designed to have greater mobility and connect traffic between population centers and regional attractions. Because of their increased mobility, arterials typically have higher speeds and a high degree of access control, with the exception of some historical sections. Arterials have a ROW of 106 feet.
- Major Collector - Major collector roads are designed to connect with and augment the arterial system and provide access control. Generally, these streets are intended to carry traffic for shorter distances than arterials and have lower speeds. Major collectors have a ROW of 84 feet.
- Minor Collector - A minor collector road is designed to carry low-speed traffic and provides greater access than major collectors. Minor collector roads are also designed for greater mobility than local streets as they are generally wider and as a result have less side friction with on-street parking. Minor collectors have a ROW of 66 feet.
- Local Street - Local streets are designed for accessibility and have less mobility than any other functional classification. The primary purpose of these is to provide access to surrounding properties and carry lowspeed traffic. Some local streets may be designed to discourage through-traffic in neighborhoods. Local streets have a ROW of 60 feet.

A summary of the Tooele roadway classifications is shown in Table 1. Typical cross-sections were designed for each of the Tooele street classifications primarily based on the existing City cross-section standards. These are shown in Figures 3 through 7 . These cross-sections do not necessarily match existing roadway cross-sections but are recommended cross-sections for new and improved roadways in the future. Bike treatments are not included in these concepts and may require additional ROW and/or pavement. The colors shown in Table 1 correspond to colors shown in both the cross-section figures and the roadway network figures shown later in the document. The Principal Arterial classification is being introduced based on future roadway improvement recommendations and has a seven-lane cross-section to accommodate higher demands.

Table 1: Roadway Classifications

| Mobility | Tooele Roadway Classifications |  |
| :---: | :---: | :---: |
|  | Classification | Characteristics |
|  | Principal Arterial | ROW: 112 feet 7 lanes |
|  | Arterial | ROW: 106 feet 5 Lanes |
|  | Major Collector | ROW: 84 feet 3 Lanes |
|  | Minor Collector | ROW: 66 feet 2 Lanes |
| Access | Local Street | ROW: 60 feet 2 Lanes |



Figure 3: Principal arterial cross-section


Figure 4: Arterial cross-section


Figure 5: Major collector cross-section


Figure 6: Minor collector cross-section


Figure 7: Local street cross-section

## C. Level of Service Analysis

Level of service (LOS) is a term that describes the operating performance of an intersection or roadway. LOS is measured quantitatively and reported on a scale from A to $F$, with A representing the best performance and $F$ the worst. Calculating a planning-level LOS for a roadway segment is completed based on volume-to-capacity ( $\mathrm{v} / \mathrm{c}$ ) ratios. The volume is the average daily traffic (ADT) for the given roadway segment and the capacity is based on factors such as lane count and traffic signal spacing.

Table 2 provides a brief description of each LOS letter designation and the accompanying range of $\mathrm{v} / \mathrm{c}$ ratios. A visual representation of the various levels of service is shown in Figure 8.

Table 2: Level of Service Descriptions

| Level of <br> Service | Description of Traffic Conditions | Volume / <br> Capacity Ratio |
| :---: | :--- | :---: |
| A | Extremely favorable progression and a very low level of <br> control (intersection) delay. Individual users are virtually <br> unaffected by others in the traffic stream. | $\leq 0.30$ |
| B | Good progression and a low level of control delay. The <br> presence of other users in the traffic stream becomes <br> noticeable. | $>0.30-0.50$ |
| C | Fair progression and a moderate level of control delay. The <br> operation of individual users becomes somewhat affected by <br> interactions with others in the traffic stream. | $>0.50-0.75$ |
| D | Marginal progression with relatively high levels of control <br> delay. Operating conditions are noticeable more constrained. | $>0.75-0.85$ |
| E | Poor progression with unacceptably high levels of control <br> delay. Operating conditions are at or near capacity. | $>0.85-1.00$ |
| F | Unacceptable progression with forced or breakdown <br> operating conditions. | $>1.00$ |

Source: Highway Capacity Manual (HCM) 6th edition (Transportation Research Board, 2016).
For the purposes of this TMP, a minimum overall performance for each of the study roadways and intersections was set at LOS D. A LOS D threshold is consistent with "state-of-the-practice" traffic engineering principles. Improvements are recommended when a roadway or intersection LOS is E or F .


Figure 8: Visual representation of LOS

## 1. Roadway Capacities

The capacities for each roadway type were identified using Transportation Research Board (TRB) Highway Capacity Manual, $6^{\text {th }}$ Edition, 2016 methodologies and based on common practice in Utah. Key factors that influence the capacity of a roadway include the number of travel lanes, presence of a two-way left-turn lane (TWLTL) or turn pockets, level of access management, and signal spacing. The assumed LOS E/F capacity thresholds for Tooele City roadways are shown in Table 3, reported as vehicles per day (vpd).

Table 3: Roadway Capacities

| Roadway Capacities |  |  |
| :---: | :---: | :---: |
| Functional Classification | Number of Lanes | Capacity (vpd) |
| Minor Collector <br> Local Street | 2 | 12,400 |
| Major Collector | 3 | 17,800 |
| Arterial | 5 | 38,000 |
| Principal Arterial | 7 | 58,000 |

## 2. Intersection LOS

Intersection LOS looks at individual intersections and provides a microscopic view of a roadway network. LOS at intersections can be broken down into directions and respective movements (left-turns, through movements, or right-turns). A detailed look at intersections should occur as frequently as necessary since they are a source of bottlenecks. The Highway Capacity Manual has divided intersections into two types, signalized and un-signalized. The methodology to calculate the delay per vehicle at an intersection is outlined in the Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition, 2016 and the subsequent delay criteria and corresponding LOS. A LOS D for intersection delay has been determined to be the acceptable limit for Tooele City. The delay thresholds for each LOS for both signalized and unsignalized intersections can be found in Table 4.

The levels of service for signalized, all-way stop-controlled (AWSC), and roundabout intersections are calculated as a weighted average of all movements. The LOS for a two-way stop-controlled (TWSC) intersection is equal to the LOS of the worst movement. Failing LOS conditions are typically experienced during the peak hours (morning and/or evening). It is not uncommon for a side street or access on busy arterials to experience LOS worse than D during the peak hours due to high traffic volumes on the major roadway. Vehicles generally learn to re-route to signalized intersections in these cases.

Table 4: Intersection LOS Criteria

| LOS | LOS Delay Criteria (sec. / vehicle) |  |
| :---: | :---: | :---: |
|  | Signalized Intersections | TWSC, AWSC, \& Roundabout <br> Intersections |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10-20$ | $>10-15$ |
| C | $>20-35$ | $>15-25$ |
| D | $>35-55$ | $>25-35$ |
| E | $>55-80$ | $>35-50$ |
| F | $>80$ | $>50$ |
| Source: Highway Capacity Manual, $6^{\text {th }}$ Edition, 2016 |  |  |

## D. EXISTING CONDITIONS

This section discusses the existing roadway and intersection conditions in Tooele. The current LOS for each of the major roadways and intersections in Tooele were analyzed. It is important to analyze the existing conditions as this serves as a baseline with which future conditions and alternatives can be compared.

## 1. Existing Roadway Network

Major roadways in Tooele have been designed on a grid system as is the pattern along much of the Wasatch Front as well. Many north-south roads are located approximately every 400 or 800 feet. Spacing of major east-west roads varies between approximately 650 feet and 800 feet.

State Route 36 (SR-36) is the City's primary north-south highway through town. Other major north-south roadways include Coleman Street, 200 West, 100 West, 100 East, Broadway Avenue, $7^{\text {th }}$ Street, and Droubay Road. 1000 North is the City's primary east-west roadway, which is designated as State Route 112 (SR-112) west of SR-36. Other major east-west routes include 700 South, 200 South, Vine Street, Utah Avenue, 200 North, 400 North, 2000 North, and 2400 North.

Local roadways in Tooele are a mixture of grid systems in some areas and unconnected roads with cul-de-sacs in other areas. Discontinuous local road systems can lead to unnecessary congestion and delay on collector and arterial roads, as vehicles are forced to take those routes even for short trips. Therefore, it is recommended that the grid system be followed as much as possible as areas develop.

The functional classifications discussed previously were assigned to the roadways in Tooele based on existing number of lanes. The existing roadway network map that shows the functional classifications is shown in Figure 9. Most roadways in Tooele City are maintained by the City. Main Street (SR-36) and 1000 North (SR-112) are state roadways and maintained by the Utah Department of Transportation (UDOT).


## 2. Existing Volumes and LOS

## Roadways

In order to accurately identify existing conditions on the roadway network in Tooele City, the consultant team gathered traffic data. Existing traffic volumes were obtained from various sources, including the following:

- UDOT - Many of the traffic volume values on State roads and other federal aid roads were obtained from UDOT's Traffic on Utah Highways database. These ADT values were 2017 volumes.
- Consultant Team Data - Where UDOT data were not available, the consultant team used data collected for this and previous projects in the area. These data were collected in the form of two-way roadway counts or turning movement counts at intersections and are included in Appendix A.

The volumes from these sources were compiled to have a comprehensive volume map of all major roadways. LOS values were assigned to each roadway segment based on the volume and the LOS criteria for roadways that was described previously. The existing traffic volumes are reported as ADT in vpd along with the LOS of each roadway segment in Figure 10.

As shown, many of the major roadways are currently operating at an acceptable LOS ( $D$ or better). Roadways that currently lack adequate capacity include Main Street (SR-36) between 600 North and 1400 North, and 1000 North between Main Street (SR-36) and Broadway Avenue.

## Intersections

Evening peak hour turning movement count data were collected for several major intersections within the City. Hales Engineering completed evening peak hour turning movement counts between 4:00 and 6:00 p.m. at the following intersections on Wednesday, January 15, 2020 and Thursday, January 16, 2020:

- 2000 North / Main Street (SR-36)
- 1000 North (SR-112) / Main Street (SR-36)
- Broadway Avenue / 1000 North
- 1000 North / Droubay Road
- 970 North / Droubay Road
- Droubay Road / Smelter Road
- Coleman Street / Utah Avenue
- Coleman Street / Vine Street

Volume data at the following intersections were collected from previous traffic studies or from UDOT's Signal Performance Metrics website:

- 2400 North / Main Street (SR-36)
- 2200 North / Main Street (SR-36)
- Aaron Drive / 2000 North
- Berra Boulevard / 2000 North
- 400 West / 2000 North
- 1280 North / Main Street (SR-36)
- 200 West / 1000 North (SR-112)
- 600 West / 1000 North (SR-112)
- Industrial Loop Road / Utah Avenue
- 600 North / Main Street (SR-36)
- 400 North / Main Street (SR-36)
- Utah Avenue / Main Street (SR-36)
- Vine Street / Main Street (SR-36)
- Skyline Drive \& 520 South / Main Street (SR-36)
- Commander Boulevard / Main Street (SR-36)

The existing evening peak hour volumes at these major intersections are shown in Figure 11.



(13) 400 N. / Main St. (SR-36)


19 Smelter Rd. / Droubay Rd.


(20) Coleman St. /Utah Ave.


(15) Vine St./Main St. (SR-36)



An intersection LOS analysis was completed for all major intersections in the City. This analysis was completed for the evening peak hour using Synchro / SimTraffic traffic modeling and simulation software, which follow HCM methodology. The evening peak hour LOS was computed for each study intersection. Multiple runs of SimTraffic were used to provide a statistical evaluation of the interaction between the intersections. LOS results are provided in Table 5 and visually in Figure 12. LOS and queueing reports are shown in Appendix $B$.

Most of the intersections in Tooele City are currently operating at acceptable levels of service during the evening peak hour. However, the 1000 North / Main Street (SR-36) intersection is currently operating at LOS E, and the Skyline Drive / Main Street (SR-36) intersection is operating at LOS F.

Table 5: Existing Evening Peak Hour Intersection Level of Service

| Intersection |  | Level of Service |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Description | Control | Movement ${ }^{1}$ | Aver. Delay (Sec/Veh) | LOS ${ }^{2}$ |
| 2400 North / Main Street (SR-36) | Signal | - | 10.0 | A |
| 2200 North / Main Street (SR-36) | EB/WB Stop | EBR | 23.6 | c |
| 2000 North / Main Street (SR-36) | Signal | - | 14.5 | B |
| Aaron Drive / 2000 North | NB/SB Stop | NBT | 14.1 | b |
| Berra Boulevard / 2000 North | Roundabout | - | 4.1 | A |
| 400 West / 2000 North | EB/WB Stop | EBT | 5.6 | a |
| 1280 North / Main Street (SR-36) | Signal | - | 23.2 | C |
| 1000 North (SR-112) / Main Street (SR-36) | Signal | - | 71.0 | E |
| 200 West / 1000 North (SR-112) | Signal | - | 13.7 | B |
| 600 West / 1000 North (SR-112) |  | SBT | 12.5 | b |
| Industrial Loop Road / Utah Avenue | Signal | - | 11.7 | B |
| 600 North / Main Street (SR-36) | Signal | - | 8.8 | A |
| 400 North / Main Street (SR-36) | Signal | - | 13.0 | B |
| Utah Avenue / Main Street (SR-36) | Signal | - | 16.3 | B |
| Vine Street / Main Street (SR-36) | Signal | - | 12.7 | B |
| Skyline Drive \& 520 South / Main Street (SR-36) | EB/WB Stop | WBL | >50 | f |
| Commander Boulevard / Main Street (SR-36) | EB/WB Stop | EBL | 9.3 | a |
| Broadway Avenue / 1000 North | NB Stop | NBL | 12.3 | b |
| 1000 North / Droubay Road | EB Stop | EBL | 9.0 | a |
| 970 North / Droubay Road | WB Stop | WBL | 6.1 | a |
| Droubay Road / Smelter Road | NB/SB Stop | NBL | 7.1 | a |
| Coleman Street / Utah Avenue | NB/SB Stop | NBL | 11.5 | b |
| Coleman Street / Vine Street | NB/SB Stop | NBT | 7.9 | a |
| 1. Movement indicated for unsignalized intersections where delay and LOS represents worst movement. SBL = Southbound left movemen <br> 2. Uppercase LOS used for signalized, roundabout, and AWSC intersections. Lowercase LOS used for non-AWSC unsignalized intersectio <br> Source: Hales Engineering, July 2020 |  |  |  |  |

It is recommended that the westbound approach of the Skyline Drive \& 520 South / Main Street (SR-36) intersection be restriped to accommodate a separate 100 -foot right-turn pocket. Additionally, the alignment of Skyline Drive or 520 South will likely need to be changed to match the street across the intersection to prepare for a future signal at some point.

It is also recommended that dual left-turn lanes be constructed on the southbound approach of the 1000 North (SR-112) / Main Street (SR-36) intersection. This will require two receiving lanes on the east leg of the intersection that merge farther down the road. A separate 200 -foot right-turn pocket should also be constructed on the eastbound approach. With these mitigations, it is anticipated that the 1000 North (SR-112) / Main Street (SR-36) intersection will operate at an acceptable LOS in existing conditions.

An intersect LOS analysis was only performed for existing conditions, due to some of the unpredictability of turning movement counts in the future. The intersections in the City should be evaluated as time goes on to determine needed improvements.

## E. Future Conditions

Future ADT roadway volumes were projected based on the anticipated development in the City. This was done based on future land use plans discussed in Chapter II as well as trip generation, distribution, and assignment. These tasks were completed to determine roadway ADT volumes, which were then translated to turning movement counts.

## 1. Land Use

It is anticipated that Tooele City will experience rapid growth in the next several years. Because future traffic estimates are dependent upon development projections, Tooele City provided potential development locations, types, and densities that would contribute to a full-build scenario. Since 2000, Tooele City has experienced an average growth of approximately 3.7 percent per year. If this growth rate holds, Tooele City will likely reach fullbuild conditions around the year 2040.

It is estimated that approximately 12,000 new dwelling units consisting of single-family housing, townhomes, and apartments will be constructed. It was also estimated that 3.5 million square feet of commercial space will be constructed, as well as 1.4 million square feet of industrial space. The new high school was also factored into the analysis. While not factored into the analysis, the extent to which Tooele City will be able to fully develop will depend on water resource availability. A map showing the assumed future land uses is shown in Figure 13.

## 2. Traffic Volumes

## Trip Generation

Based on the proposed future land use conditions, trip generation for future conditions was calculated using trip generation rates published in the Institute of Transportation Engineers (ITE), Trip Generation, $10^{\text {th }}$ Edition, 2017.




## Trip Distribution and Assignment

Development traffic is assigned to the roadway network based on the proximity of the developments to major streets, high population densities, and regional trip attractions. Existing travel patterns observed during data collection also provide helpful guidance to establishing these distribution percentages.

Because Tooele City is shifting from its current status as a primarily residential community to one with a mix of commercial and residential land uses, it is likely that a full-build condition will see most of the trips being internal to Tooele City. For a full-build scenario, it was assumed that approximately $15 \%$ of trips would be external, with the rest leaving city boundaries to the north, west, and south. The resulting distribution of daily external trips is as follows:

## To/From City:

- $93 \%$ North
- $2 \%$ South
- $5 \%$ West

These trip distribution assumptions were used to assign the daily generated traffic along the roadways in Tooele City to create trip assignment for a fully developed condition.

## 3. No-Build LOS

LOS was analyzed for a scenario in which new roads had been constructed to support full development, but existing roads had not been widened (no-build condition). The exception to this is SR-36, which is planned to be widened to a 7 -lane cross-section north of 1000 North (SR-112). According to the Unified Plan, this widening is a Phase 3 project and is scheduled to be completed between 2041 and 2050. All new roads, with the exception of Tooele Boulevard, were assumed to have a 2-lane cross-section. The no-build roadway LOS for future conditions is shown in Figure 14.

## 4. Roadway Improvements

As Tooele continues to develop, new roads will be constructed to connect developments to arterial streets. Additionally, improvements for future conditions were recommended for roadways that are anticipated to operate at a poor LOS. New roads and recommended improvements on city roadways are listed in Table 6 and shown in Figure 15. The future roadway network with signal locations and roadway functional classification is shown in Figure 16. Future signal locations were assigned based on the current corridor agreements with UDOT and based on the proposed roadway network.

Because Mid Valley Highway is not feasible given current land use, it is more likely that Tooele Boulevard will extend from its current terminus at 700 South to connect with SR-36 just north of the army depot.

SR-36 has plans to be widened to a 4- or 5-lane cross section from Skyline Drive to Stockton. This project is also unfunded, and it was not included in the analysis as projected volumes do not warrant widening at this time.

SR-112 is planned to be widened to a 5-lane cross-section from where it meets Utah Avenue to Grantsville. This project is also currently unfunded but was included in the analysis.

The widening to 5 lanes on 1000 North from Main Street (SR-36) to Droubay road will likely need a variance from the established arterial cross-section due to narrow pavement widths along this segment


Table 6: Recommended Improvement Projects

| \# | Location | Type | Description | Jurisdiction |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2000 North: 475 West to SR-112 | New Road | Build 3-lane road | City |
| 2 | 2600 North: 2400 North to 1500 West | New Road | Build 2-lane road | City |
| 3 | 400 West: 2200 North to 3400 North | New Road | Build 3-lane road | City |
| 4 | 1500 West: 2000 North to 2600 North | New Road | Build 2-lane road | City |
| 5 | 3000 North: Main Street (SR-36) to 200 West | New Road | Build 5-lane road | City |
| 6 | Copper Canyon Road: Broadway Avenue to 1000 North | New Road | Build 2-lane road | City |
| 7 | Tooele Blvd: 400 West to Utah Avenue; 700 South to SR-36 | New Road | Build 3-lane road | City |
| 8 | 520 East: 1400 North to Pine Canyon Road | New Road | Build 2-lane road | City |
| 9 | 3200 North: Main Street (SR-36) to 1200 West | New Road | Build 2-lane road | City |
| 10 | 1200 West: 1000 North (SR-112) to 3400 North | New Road | Build 3-lane road | City |
| 11 | 2800 North: Main Street (SR-36) to 1500 West | New Road | Build 2-lane road | City |
| 12 | 2600 North: Main Street (SR-36) to 400 West | New Road | Build 2-lane road | City |
| 13 | 200 West: 2200 North to 3200 North | New Road | Build 2-lane road | City |
| 14 | 2200 North: 400 West to 1200 West | New Road | Build 2-lane road | City |
| 15 | 800 West: Rogers Street to 2200 North | New Road | Build 2-lane road | City |
| 16 | 1300 West: 1000 North to 2600 North | New Road | Build 2-lane road | City |
| 17 | 1280 North: Existing Terminus to 1310 North | New Road | Build 2-lane road | City |
| 18 | Broadway Avenue: 1000 North to 1520 North | New Road | Build 2-lane road | City |
| 19 | 670 East: 2400 North to 2800 North | New Road | Build 2-lane road | City |
| 20 | 600 North: 450 West to Coleman St.; Kay Ln. to Tooele Blvd | New Road | Build 2-lane road | City |
| 21 | 1500 North: 400 West to 1300 West | New Road | Build 2-lane road | City |
| 22 | 2000 North: Main Street (SR-36) to 200 West | Widening | Widen to 5 lanes | City |
| 23 | 2000 North: 200 West to 400 West | Widening | Widen to 3 lanes | City |
| 24 | Droubay Road: 1000 North to North City Limits | Widening | Widen to 5 lanes | City |
| 25 | 1000 North: Main Street (SR-36) to 690 East | Widening | Widen to 5 lanes | City |
| 26 | Main Street (SR-36): Utah Avenue to North City Limits | Widening | Widen to 7 lanes | UDOT |
| 27 | 2400 North: Western Terminus to 200 West | New Road | Build 5-lane road | City |
| 28 | 2400 North: 200 West to 400 West | New Road | Build 3-lane road | City |
| 29 | Utah Avenue: Main Street (SR-36) to Tooele Boulevard | Widening | Widen to 3 lanes | City |
| 30 | Utah Avenue: Tooele Boulevard to West City Limits | Widening | Widen to 5 lanes | City |
| 31 | Droubay Road: Vine Street to 1000 North | Widening | Widen to 3 lanes | City |
| 32 | 400 West: 1000 North (SR-112) to 1500 North | Widening | Widen to 3 lanes | City |
| 33 | 1000 North: Main Street (SR-36) to Utah Avenue | Widening | Widen to 7 lanes | UDOT |
| 34 | 3000 North: 200 West to 400 West | New Road | Build 3-lane road | City |
| 35 | Skyline Drive \& 520 South / Main Street (SR-36) | Intersection | Realign to fix offset | UDOT |
| 36 | 1000 North (SR-112) / Main Street (SR-36) | Intersection | Innovative intersection | UDOT |
| 37 | Berra Boulevard: 2000 North to 2400 North | New/Widen | Build 3-lane road | City |


*Note: Arterial cross-section on 1000 North east of Main Street will vary from standard.

Due to development on the eastern terminus of Skyline Drive, the Skyline Drive \& 520 South / Main Street (SR-36) intersection will likely need to be signalized. As a part of this, UDOT will likely require Skyline Drive to be realigned so that it matches 520 South to avoid offset intersections.

Based on projected volumes, 1000 North (SR-112) may need to be widened to a 7-lane cross-section from Main Street (SR-36) to Utah Avenue. It is recommended that UDOT acquire the necessary right-of way, but UDOT may decide to stripe it as a 5 -lane road until additional lanes are warranted.

Due to heavy projected volumes at the 1000 North (SR-112) / Main Street (SR-36) intersection, a conventional intersection may not be adequate. UDOT may consider implementing an innovative intersection, such as a continuous flow intersection (CFI).

Currently, Droubay Road is 20 feet wide between Smelter Road and Vine Street. It is recommended that it be widened to a full 3-lane cross-section from Vine Street to 1000 North as Tooele County is planning an Oquirrh Expressway connection on Droubay to the north of the City. Droubay Road will likely need to be widened to 5 lanes north of 1000 North.

While the volumes on most new roads, particularly in the Overlake area, would operate with adequate capacity with a 2-lane cross-section, it is better to construct some roads as clear collectors to incentivize vehicle travel away from local streets. In the project list, roads such as 400 West, 1200 West, and 2000 North are recommended to contain three lanes. This would be especially useful if Tooele City ever decided to annex the area to the north and connect new development there to its roadway system in the Overlake area.

## 5. Full-Build LOS

With the proposed improvements, most Tooele City roadways are anticipated to operate at LOS D or better, as shown in Figure 17. Main Street (SR-36) may not have adequate capacity to service full demand, even with seven lanes. Additional turn lanes at intersections can also increase capacity as needed. However, when streets become congested, motorists will often choose to take alternative routes. Droubay Road have additional capacity to accommodate traffic rerouting away from SR-36. As discussed, an innovative intersection such as a continuous flow intersection (CFI) may be needed in the future at the 1000 North / Main Street (SR-36) intersection.

## F. Truck Routes

In order to minimize the impact of trucks on most city streets, truck routes have been designated for existing and future roadways. These truck routes are primarily located on arterial roadways, including all state-maintained arterials located in Tooele City. The Tooele City Code outlines the following public streets that are designated as truck routes:


- Main Street (SR-36)
- SR-112
- Tooele Boulevard (1100 West)
- Droubay Road
- Pine Canyon Road

These can be found in Section 10-2-7 of the City Code. Figure 18 shows designated truck routes within Tooele City. Currently, Main Street (SR-36) experiences approximately 5 percent truck traffic at Vine Street.



## IV. Alternative Modes of Transportation

## A. Purpose

A transportation system is composed of more than roadways. It also includes provisions for other modes of transportation including public transit, cycling, and walking. The purpose of this section is to discuss these modes and how Tooele City can improve the infrastructure that facilitates these modes.

## B. Public Transit



Public transportation in Tooele City is served by the Utah Transit Authority (UTA). Currently, public transportation within city limits includes bus and flex shuttle service. Figure 19 shows the existing transit routes in Tooele.

The following and existing transit facilities in Tooele City:

- Bus - There is one existing UTA bus route that services Tooele City, which is Route 451. Route 451 has five buses leaving Tooele to Salt Lake City from 5:00 to 7:00 a.m. and five buses leaving Salt Lake City to Tooele from 3:45 to 5:45 p.m. All buses have approximately 30 minutes of headway.
- Flex Shuttle - There are three existing UTA flex shuttle routes that service Tooele City: Routes F400, F402, and F453. These routes provide comprehensive service to the City of Tooele and Route F453 provides service to and from Salt Lake City. The shuttles follow the assigned route but also change course to pick up riders. These routes vary in headway from 30 minutes to one hour.

Future transit projects could include increasing express service to and from Salt Lake City, potentially during offpeak hours. Internal routes could be added to Tooele City as residential and commercial development continues to increase. Tooele City should also work with UTA to extend transit routes to the industrial depot area.

## C. Active Transportation



Providing safe and convenient bicycle and pedestrian facilities in Tooele City is critical to promoting active and multi-modal transportation. If citizens have easy access to these facilities, use of the bicycle and pedestrian modes of travel will increase. The City has a few existing routes to facilitate these modes. However, there are also some improvements that could be made to improve the system.

This section is a supplement to the parks and recreation element of the General Plan. The following are the classifications of bike facilities that are found or planned for in Tooele City:

- Multi-Use Trail - A separate path designed for non-motorized traffic such as bicycles or pedestrians. Other names for these facilities include "bike paths" or "shared-use paths."
- Bike Lane - A facility that includes striped lanes meant for bicycle use within the paved roadway.
- Shared Roadway - Facilities designated by signs, striping, and/or directional markers where bicycles share the roadway with motorized traffic.

Tooele City currently has a small network of these bike facilities. Recently, shared roadways were marked along Vine Street between 50 East and 50 West and along 100 East between 700 North and 1000 North. Bike lanes exist along 1000 North between 100 East and Droubay Road. There is a partially-paved trail that starts on Utah Avenue at the west end of the city winds its way up, crossing underneath 1000 North (SR-112) and ends on Sheep Lane. According to the Tooele County Active Transportation Implementation Plan (November 2018), this is part of the priority active transport corridor.

Future bike facilities were identified based primarily on the Tooele County Active Transportation Implementation Plan and UTA's First Mile/Last Mile web map application. Existing and proposed bike facilities are shown in Figure 20. The purpose of the proposed facilities is to connect existing facilities and to plan for facilities in developing areas.

Concepts of typical bike lane and shared roadway treatment cross-sections for the City's use were designed based on the
 National Association of City Transportation Officials (NACTO) Urban Bikeway Design Guide and the Utah Manual on Uniform Traffic Control Devices (MUTCD). These concepts are shown in Figure 21. Concepts have been provided for the following proposed treatments:

1. Shared Roadway - This treatment includes a sharrow in the vehicle travel lane for shared use.
2. Conventional Bike Lane - This treatment is a dedicated bike lane adjacent to vehicle traffic.
3. Buffered Bike Lane - This treatment is a bike lane separated by a small buffer from vehicles. This treatment would be ideal for 1000 North.


The location of parks is important when considering bike and pedestrian facilities and this was considered when proposing future facilities. Several parks currently exist in Tooele City, scattered in a variety of places. The Tooele City Parks Map can be found at the following website:
https://tooelecity.org/wp-content/uploads/2014/03/CITY-PARKS-Feb2019.pdf



- Sharrow only to be used in travel lane, not in bike lane or shoulder
- Minimum placement of 4 feet from curb, or 11 feet with street parking
- Sharrow marking should be centered in lane if speed limit is 25 mph or less
- Not preferred on high-speed, high-volume roadways - Frequent, visible marking is essential: every 50-250 feet
- See M UTCD Figure 9C-9 and NACTO Urban Bikeway Design Guide


## 3 <br> Buffered Bike Lane

- Bike lane separated from vehicle lane by striped buffer - Minimum lane width of 4 feet; preferred width of 6 feet - Minimum buffer width of 18 inches
- If buffer is 3 feet wide or greater, diagonal hatching is required (4-inch stripe at 30-45 degrees)
- If a parking lane is provided along bike lane, an additional buffer may be placed between the bike lane and the parking lane
- See M UTCD Figure 9C-3 and NACTO Urban Bikeway Design Guide



## 2

## Conventional Bike Lane

- Minimum width of 4 feet; preferred width of 6 feet - If bike lane is adjacent to a parking lane, the width should be at least 5 feet
- A bike lane adjacent to a physical barrier must be 2 feet wider than otherwise
- Stripe separating bike lane and vehicle lane should be 6 to 8 inches wide
- Stripe separating bike lane and parking lane should be 4 inches wide
- See M UTCD Figure 9C-3 and NACTO Urban Bikeway Design Guide



## V. SAfety

## A. Purpose

The purpose of this chapter is to analyze the safety of the existing road network in Tooele City and to recommend improvements. A few intersections have been identified by the City as areas of concern, which will be discussed in this chapter. In addition, potential traffic calming measures and access management strategies are presented.

## B. SAFETY HOTSPOTS

This section addresses safety concerns at existing intersections in Tooele City. Factors including crash history, sight distance, and intersection offset were examined to determine if any mitigations are needed to improve safety. Crash data are protected under 23 USC 409.

- 100 East / 400 North
- After examining the crash history from 2010 through 2019, it was determined that the number of crashes was at least twice what it was at comparable intersections on 100 East at Vine Street and 1000 North. Angle collisions comprised approximately 70 percent of crashes at this location and one severe crash occurred in which a vehicle occupant suffered a serious injury. 15 percent of crashes occurred in instances in which a driver disregarded the stop signs. Tooele City could consider a hierarchical approach in which increasing measures are implemented, including installing oversized stop signs, striping stop bars and double yellow lines, painting "STOP" on the northbound and southbound approaches, and installing a flashing stop sign. If these measures fail and crash rates remain high, Tooele City may consider installing an all-way stop if volume warrants meet.
- Skyline Drive / Main Street (SR-36)
- The Skyline Drive / Main Street (SR-36) is offset approximately 100 feet north of the 520 South / Main Street (SR-36) intersection. Intersection offsets are divided into negative offsets and positive offsets. Negative offsets occur where side streets are misaligned in such a way as to generate conflict zones for left-turn movements from major streets. In these cases, opposing left-turning vehicles must occupy or cross the same space while completing their maneuvers. The Skyline Drive / Main Street (SR-36) intersection is at a positive offset, which, while the same left-turn conflicts do not apply, is not desirable. A future signal is planned at this location, and when it is installed, UDOT may require Skyline Drive or 520 South to be realigned to match the opposite street.
- 400 South / Main Street (SR-36)
- This intersection was identified as a concern due to limits on vertical sight distance. Main Street (SR-36) continues at a 5 percent grade up to a crest vertical curve approximately 500 feet south of the intersection. According to the American Association of State Highway and Transportation Officials (AASHTO) A Policy on Geometric Design of Highways and Streets, the intersection sight
distance (ISD) for a vehicle turning left from a stop should be 445 feet for a design speed of 40 mph. Therefore, the 400 South / Main Street (SR-36) intersection meets this standard.
- Broadway Avenue / 1000 North
- While the number of crashes at this intersection is not unusual (a total of 22 from 2010 to 2019), 60 percent of them were front-to-rear collisions. About half of the front-to-rear crashes involved distracted driving.


## C. Traffic Calming

Traffic calming can involve measures to influence behavior or reduce the speed of vehicles on a given road or intersection. These can take the form of physical or non-physical measures, and a few examples are outlined below:

- Speed Enforcement
- Targeted speed enforcement by local law enforcement agencies can have a significant impact on the prevailing speed in certain locations. Enforcement efforts can be targeted at specific locations at certain times of the day to encourage drivers to comply with the posted speed limit.
- Driver Feedback Signs
- Driver feedback signs, as shown in Figure 22, can help drivers be more aware of their speed in relation to the posted speed limit. Driver feedback signs can be permanently mounted, temporary installations, or mounted on a trailer. In each case the current speed of the approaching vehicles is detected and shown on a digital display, along with the posted speed limit on a static display.


Figure 22: Driver feedback sign

- Lane Striping
- Lane striping not only delineates the lane of travel but can also create a narrow feel on the roadway without narrowing the paved surface, as shown in Figure 23. The narrow feel can
encourage some drivers to reduce speeds. Lane striping can also be used to create bicycle lanes, parking spaces, or delineate other uses.


Figure 23: Lane striping

- Signage
- The placement of signage such as speed limit signs or signs dictating various restrictions can be used for traffic calming purposes. Restriction type signs can include signs prohibiting trucks, turning movements, through movements, or others.
- Speed Legends
- Speed legends consist of letters and numbers painted on the roadway surface, usually in conjunction with roadside mounted signs, indicating the posted speed limit. For an example, see Figure 24.


Figure 24: Speed legend

- Traffic Circles
- Traffic circles are raised islands, usually circular in shape, that are constructed in the center of an intersection. The presence of these features requires that vehicles slow down to navigate around the traffic circle. For an example, see Figure 25.


Figure 25: Traffic circle

- Roundabouts
- A roundabout is like a traffic circle in that it features a circular center island. However, roundabouts are generally much larger and have raised islands on the approaches to divert traffic in the direction of the travel in the roundabout. Vehicles approaching a roundabout yield
to traffic already in the roundabout. Due to the large footprint required to construct a roundabout, this traffic calming measure is generally unfeasible in established neighborhoods.
- Chicanes
- Chicanes are short curb extensions or "edge islands" that alternate from one side of the road to the other on a roadway segment, as shown in Figure 26. These features required vehicles to "zig zag" slightly as they travel on the roadway, resulting in reduced speeds.


Figure 26: Chicane

- Lateral Shifts
- Like a chicane, a lateral shift requires traffic to shift to one side, as shown in Figure 27. However, with this countermeasure the lanes only shift once, and it usually occurs near an intersection approach.


Figure 27: Lateral shift

- Bulb-outs / Neckdowns
- Bulb-outs / neckdowns are curb extensions at intersection approaches, as shown in Figure 28. These curb extension narrows the lane at the approach, shortens the curb radius, and results in lower speeds. Bulb-outs also shorten crossing time and distances for pedestrians.


Figure 28: Bulb-out

TOOELE CITY

- Chokers
- Chokers are curb extensions that occur midblock, as opposed to bulb-outs / neckdowns which occur at intersections. Chokers create a narrowed traveled way, resulting in lower speeds. For an example, see Figure 29.


Figure 29: Choker

- Raised Pedestrian Crossings
- A raised pedestrian crossing is similar to a speed hump, but they are intended to be wide enough to allow for a pedestrian crossing, as shown in Figure 30. Their function is to slow traffic, decrease volumes and increase visibility of pedestrians.


Figure 30: Raised pedestrian crossing

## D. Access Management

Access spacing should vary by functional classification type. As a general rule, the greater the mobility on a roadway, the lower the accessibility. Arterials and major collectors are typically designed as major routes to allow vehicles greater ease of travel with few interruptions. These roads should have limited access points so as not to disrupt flow of traffic. In contrast, local streets experience comparatively little traffic and are designed to allow access to individual properties, which should keep the speed down.

Based on recommendations from the literature and from state-of-the-practice of other municipalities and DOTs, recommendations for minimum signalized, public street, and private access spacing have been compiled and are shown in Table 7.

When possible, streets and accesses should line up with the street or access across the intersection. Offset intersections are categorized as either positive or negative, depending on the orientation. Negative offsets occur when left-turning movements off the major street conflict with each other. This is especially a safety concern where two-way left-turn lanes (TWLTL) exist as these become lanes to move left-turning vehicles out of the through lanes, and they are typically used to slow down over a distance of several feet. Negative offsets create potential for head-on collisions, as shown in Figure 31. Positive offsets are preferred over negative ones, but the ideal option is to have streets line up.

Table 7: Access Management Spacing Recommendations

| Street Classification | Minimum Signal <br> Spacing (feet) | Minimum Street <br> Spacing (feet) $)^{1,4}$ | Minimum <br> Commercial Access <br> Spacing (feet) $)^{1,4}$ | Minimum <br> Residential Access <br> Spacing (feet) ${ }^{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Arterial | 2,640 | 660 | $330^{2}$ | $\mathrm{n} / \mathrm{a}^{3}$ |
| Major Collector | 1,320 | 660 | 330 | $\mathrm{n} / \mathrm{a}^{3}$ |
| Minor Collector | 1,320 | 330 | 150 | 150 |
| Local Street | 1,320 | 150 | 150 | 50 |

## Notes:

1. Measured centerline to centerline
2. Access to an arterial should only be granted when other reasonable access is not available to a collector or local street. If granted, the access should be limited to right-in/right-out only if possible.
3. Residential access should not be granted on arterials or major collectors.
4. Minimum Street Spacing refers to unsignalized intersection spacing; if a traffic signal is present, a traffic impact study should determine if the minimum street spacing should be longer.


Figure 31: Offset diagram

## VI. Conclusion

## A. Overview

The purpose of this TMP for Tooele City is to plan for the future multi-modal transportation needs of Tooele City. The following tasks were completed as a part of this TMP:

- The land use and socioeconomic characteristics were reviewed and summarized.
- The functional classification of roadways was redefined.
- Data were collected to summarize the existing traffic volume conditions.
- Future volumes in full-build conditions were projected using development predictions from Tooele City and standard rates published by ITE.
- A LOS analysis was performed to identify existing and future transportation needs.
- Improvements were recommended to support future growth.
- Locations for future signals were identified.
- Truck routes on existing and future roadways were identified.
- The public transit opportunities of the City were discussed.
- Recommendations were given regarding active transportation facilities.
- Several City transportation management strategies were outlined.


## B. Next Steps

It is recommended that the following steps be taken to implement the proposed improvements and recommendations of this study:

- Implement this TMP and pursue funding for roadway projects as needed.
- Request that UDOT complete a left-turn study at the 1000 North (SR-112) / Main Street (SR-36) intersection to determine if southbound and other dual left-turn lanes are currently warranted.
- Require that the trip generation for all new developments be calculated to determine its impact on City roadways. With each new development that generates at least 100 peak hour trips, require that a traffic impact study be completed to analyze nearby intersections to determine needed improvements.
- Continue to communicate regularly with UDOT and UTA on current and future roadway and transit improvement needs within the City.
- Work with the State's Office of Outdoor Recreation, Bike Utah, and other agencies to apply for grant funding to increase the number of trails and active transportation/recreation options for Tooele City residents. Install bicycle and pedestrian friendly facilities (bike racks, water stations, etc) at key locations for public access.
- Plan to address the safety hotspots with traffic calming devices as outlined above in the plan
- Work with UTA to extend public transportation options, specifically service to the Industrial Depot which serves as a source of regional employment.


## APPENDIX A: Traffic Volume Data Collection











| Tube Count Location | Direction | ADT (vpd) | Posted Speed <br> $(\mathrm{mph})$ | 85th \% Speed <br> (mph) | \% Trucks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1: SR-36, North of 2400 N | NB | 12,802 | 60 | 75.6 | $22.2 \%$ |
|  | SB | 15,198 | 60 | 65.7 | $16.9 \%$ |
|  | Both | 28,000 | 60 | 70.2 | $19.3 \%$ |
| 2: SR-36, South of <br> Commander Blvd | NB | 2,961 | 55 | 63.5 | $22.9 \%$ |
|  | SB | 2,987 | 55 | 69.9 | $33.1 \%$ |
|  | Both | 5,948 | 55 | 67.9 | $28.0 \%$ |
| 3: 1000 North, East of Utah <br> Avenue / SR-112 | EB | 4,014 | 50 | 59.2 | $18.0 \%$ |
|  | WB | 4,131 | 50 | 60.1 | $14.4 \%$ |
|  | Both | 8,145 | 50 | 59.6 | $16.2 \%$ |









tooele City
TRANSPORTATION MASTER PLAN

## APPENDIX B: LOS and Queueing Results



Intersection: Main Street (SR-36) \& 2200 North
Type:
Unsignalized



Intersection:
Type:

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | $L$ | 24 | 24 | 101 | 13.3 | B |
|  | T | 3 | 3 | 100 | 14.1 | $B$ |
|  | R | 102 | 102 | 100 | 5.3 | A |
|  | Subtotal | 129 | 129 | 100 | 7.0 | A |
| SB | L | 50 | 48 | 96 | 10.0 | A |
|  | T | 6 | 6 | 96 | 9.9 | A |
|  | R | 16 | 17 | 105 | 3.9 | A |
|  | Subtotal | 72 | 71 | 99 | 8.5 | A |
| EB | L | 6 | 5 | 80 | 2.6 | A |
|  | T | 186 | 179 | 96 | 1.1 | A |
|  | R | 24 | 26 | 109 | 0.4 | A |
|  | Subtotal | 216 | 210 | 97 | 1.0 | A |
| WB | L | 201 | 199 | 99 | 4.0 | A |
|  | T | 253 | 248 | 98 | 1.8 | A |
|  | R | 48 | 50 | 104 | 0.6 | A |
|  | Subtotal | 502 | 497 | 99 | 2.6 | A |
| Total |  | 920 | 907 | 99 | 3.3 | $A$ |



Intersection: Berra Boulevard \& 2000 North
Type: Roundabout

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 8 | 9 | 109 | 2.3 | A |
|  | T | 4 | 5 | 125 | 3.0 | A |
|  | R | 56 | 55 | 99 | 2.3 | A |
|  | Subtotal | 68 | 69 | 101 | 2.4 | A |
| SB | L | 26 | 23 | 89 | 2.6 | A |
|  | T | 5 | 5 | 100 | 2.6 | A |
|  | R | 7 | 7 | 97 | 2.6 | A |
|  | Subtotal | 38 | 35 | 92 | 2.6 | A |
| EB | L | 3 | 2 | 67 | 3.3 | A |
|  | T | 133 | 130 | 98 | 4.7 | A |
|  | R | 10 | 12 | 117 | 2.7 | A |
|  | Subtotal | 146 | 144 | 99 | 4.5 | A |
| WB | L | 72 | 70 | 97 | 3.5 | A |
|  | T | 180 | 177 | 98 | 5.2 | A |
|  | R | 40 | 40 | 100 | 3.4 | A |
|  | Subtotal | 292 | 287 | 98 | 4.5 | A |
| Total |  | 545 | 535 | 98 | 4.1 | $A$ |

Intersection:
400 West \& 2000 North
Type:
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 1 | 0 | 0 |  |  |
|  | T | 8 | 9 | 109 | 0.9 | A |
|  | R | 40 | 38 | 95 | 0.2 | A |
|  | Subtotal | 49 | 47 | 96 | 0.3 | A |
| SB | L | 4 | 4 | 100 | 1.4 | A |
|  | T | 10 | 11 | 107 | 0.1 | A |
|  | R | 1 | 1 | 100 | 0.0 | A |
|  | Subtotal | 15 | 16 | 107 | 0.4 | A |
| $E B$ | $L$ | 1 | 0 | 0 |  |  |
|  | T | 2 | 2 | 100 | 5.6 | A |
|  | R | 1 | 2 | 200 | 1.9 | A |
|  | Subtotal | 4 | 4 | 100 | 3.8 | A |
| WB | L | 63 | 62 | 99 | 4.5 | A |
|  | T | 130 | 126 | 97 | 0.4 | A |
|  | R | 3 | 3 | 100 | 1.6 | A |
|  | Subtotal | 196 | 191 | 97 | 1.7 | A |
| Total |  | 264 | 258 | 98 | 1.5 | A |



Intersection: Main Street (SR-36) \& 1000 North (SR-112)/1000 North
Type:
Signalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 167 | 164 | 98 | 66.1 | E |
|  | T | 1,055 | 1,046 | 99 | 47.3 | D |
|  | R | 134 | 133 | 99 | 26.7 | C |
|  | Subtotal | 1,356 | 1,343 | 99 | 47.6 | D |
| SB | L | 549 | 490 | 89 | 139.9 | F |
|  | T | 1,814 | 1,684 | 93 | 68.5 | E |
|  | R | 87 | 86 | 99 | 51.6 | D |
|  | Subtotal | 2,450 | 2,260 | 92 | 83.3 | F |
| EB | L | 122 | 121 | 99 | 71.9 | $E$ |
|  | T | 174 | 174 | 100 | 112.8 | $F$ |
|  | R | 131 | 122 | 93 | 99.6 | $F$ |
|  | Subtotal | 427 | 417 | 98 | 97.1 | $F$ |
| WB | L | 170 | 168 | 99 | 96.2 | $F$ |
|  | T | 189 | 190 | 101 | 59.5 | E |
|  | R | 210 | 211 | 100 | 16.4 | $B$ |
|  | Subtotal | 569 | 569 | 100 | 54.4 | D |
| Total |  | 4,802 | 4,589 | 96 | 71.0 | E |



Intersection: $\quad 600$ West \& 1000 North (SR-112)
Type:
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 3 | 2 | 67 | 6.8 | A |
|  | T | 9 | 8 | 86 | 10.1 | $B$ |
|  | R | 44 | 46 | 104 | 4.0 | A |
|  | Subtotal | 56 | 56 | 100 | 5.0 | A |
| SB | $L$ | 66 | 65 | 98 | 11.9 | B |
|  | T | 11 | 13 | 116 | 12.5 | $B$ |
|  | R | 76 | 77 | 101 | 6.2 | A |
|  | Subtotal | 153 | 155 | 101 | 9.1 | A |
| EB | L | 63 | 65 | 104 | 3.1 | A |
|  | T | 336 | 334 | 99 | 2.2 | A |
|  | R | 7 | 6 | 83 | 1.2 | A |
|  | Subtotal | 406 | 405 | 100 | 2.3 | A |
| WB | L | 45 | 42 | 93 | 3.5 | A |
|  | T | 302 | 298 | 99 | 3.3 | A |
|  | R | 67 | 69 | 103 | 2.4 | A |
|  | Subtotal | 414 | 409 | 99 | 3.2 | A |
| Total |  | 1,030 | 1,025 | 99 | 3.8 | $A$ |



Intersection: Industrial Loop Road \& Utah Avenue
Type:
Signalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 5 | 6 | 114 | 9.5 | A |
|  | T | 267 | 272 | 102 | 7.4 | A |
|  | R | 96 | 96 | 100 | 2.8 | A |
|  | Subtotal | 368 | 374 | 102 | 6.3 | A |
| SB | L | 199 | 199 | 100 | 15.8 | $B$ |
|  | T | 314 | 320 | 102 | 6.8 | A |
|  | R | 10 | 12 | 120 | 2.2 | A |
|  | Subtotal | 523 | 531 | 102 | 10.1 | A |
| WB | L2 | 87 | 86 | 99 | 31.9 | C |
|  | L | 33 | 32 | 97 | 29.5 | C |
|  | R | 252 | 255 | 101 | 5.6 | A |
|  | Subtotal | 372 | 373 | 100 | 13.7 | $B$ |
| NE | L | 43 | 42 | 98 | 30.3 | C |
|  | R | 71 | 72 | 101 | 31.0 | C |
|  | R2 | 20 | 17 | 86 | 5.5 | A |
|  | Subtotal | 134 | 131 | 98 | 27.5 | C |
| Total |  | 1,396 | 1,409 | 101 | 11.7 | B |

Intersection: Main Street (SR-36) \& 600 North
Type:
Signalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 45 | 43 | 96 | 21.8 | C |
|  | T | 1,284 | 1,285 | 100 | 4.9 | A |
|  | R | 40 | 37 | 92 | 4.9 | A |
|  | Subtotal | 1,369 | 1,365 | 100 | 5.4 | A |
| SB | L | 62 | 56 | 90 | 20.3 | C |
|  | T | 1,983 | 1,841 | 93 | 8.9 | A |
|  | R | 70 | 65 | 93 | 10.6 | $B$ |
|  | Subtotal | 2,115 | 1,962 | 93 | 9.3 | A |
| EB | L | 53 | 46 | 87 | 39.9 | D |
|  | T | 20 | 18 | 91 | 41.9 | D |
|  | R | 40 | 42 | 104 | 22.5 | C |
|  | Subtotal | 113 | 106 | 94 | 33.3 | C |
| WB | L | 2 | 2 | 100 | 39.6 | D |
|  | T | 30 | 26 | 87 | 40.7 | D |
|  | R | 38 | 40 | 105 | 16.3 | $B$ |
|  | Subtotal | 70 | 68 | 97 | 26.3 | C |
| Total |  | 3,667 | 3,501 | 95 | 8.8 | $A$ |



Intersection: Main Street (SR-36) \& Utah Avenue
Type:
Signalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 84 | 82 | 97 | 15.6 | B |
|  | T | 1,058 | 1,043 | 99 | 12.0 | $B$ |
|  | R | 26 | 28 | 109 | 5.0 | A |
|  | Subtotal | 1,168 | 1,153 | 99 | 12.1 | $B$ |
| SB | L | 111 | 108 | 97 | 17.5 | B |
|  | T | 1,216 | 1,141 | 94 | 11.5 | $B$ |
|  | R | 52 | 47 | 91 | 11.3 | B |
|  | Subtotal | 1,379 | 1,296 | 94 | 12.0 | $B$ |
| EB | L | 177 | 190 | 107 | 46.7 | D |
|  | T | 41 | 40 | 97 | 36.5 | D |
|  | R | 161 | 163 | 101 | 21.6 | C |
|  | Subtotal | 379 | 393 | 104 | 35.3 | D |
| WB | L | 50 | 52 | 103 | 40.2 | D |
|  | T | 35 | 34 | 97 | 53.8 | D |
|  | R | 60 | 59 | 99 | 21.3 | C |
|  | Subtotal | 145 | 145 | 100 | 35.7 | D |
| Total |  | 3,071 | 2,987 | 97 | 16.3 | $B$ |



Intersection: Main Street (SR-36) \& 520 South/Skyline Drive
Type:
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 7 | 6 | 83 | 7.5 | A |
|  | T | 570 | 565 | 99 | 3.2 | A |
|  | R | 52 | 53 | 101 | 2.9 | A |
|  | Subtotal | 629 | 624 | 99 | 3.2 | A |
| SB | L | 173 | 163 | 94 | 8.4 | A |
|  | T | 985 | 936 | 95 | 2.5 | A |
|  | R | 18 | 16 | 90 | 3.4 | A |
|  | Subtotal | 1,176 | 1,115 | 95 | 3.4 | A |
| EB | L | 12 | 12 | 102 | 38.6 | E |
|  | T | 1 | 1 | 100 | 51.3 | $F$ |
|  | R | 3 | 4 | 133 | 11.7 | $B$ |
|  | Subtotal | 16 | 17 | 106 | 33.0 | D |
| WB | $L$ | 31 | 30 | 96 | 127.6 | $F$ |
|  | T | 3 | 4 | 133 | 105.3 | $F$ |
|  | R | 110 | 108 | 98 | 69.0 | $F$ |
|  | Subtotal | 144 | 142 | 99 | 82.4 | $F$ |
| Total |  | 1,965 | 1,898 | 97 | 9.5 | $A$ |


|  | SimTraffic LOS Report |
| :--- | :--- |
|  |  |
| Project: | Tooele City Transportation Master Plan |
| Analysis Period: | Existing (2020) Background <br> Evening Peak Hour |
| Time Period: |  |

$\begin{array}{ll}\text { Intersection: } & \text { Main Street (SR-36) \& Commander Boulevard } \\ \text { Type: } & \text { Unsignalized }\end{array}$

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| $E B$ | $L$ | 165 | 167 | 101 | 9.3 | A |
|  | R | 16 | 19 | 117 | 1.5 | A |
|  | Subtotal | 181 | 186 | 103 | 8.5 | A |
| NE | L | 6 | 5 | 87 | 1.6 | A |
|  | T | 230 | 230 | 100 | 1.4 | A |
|  | Subtotal | 236 | 235 | 100 | 1.4 | A |
| SW | T | 574 | 531 | 92 | 3.3 | A |
|  | R | 16 | 15 | 92 | 5.1 | A |
|  | Subtotal | 590 | 546 | 93 | 3.3 | A |
|  |  |  |  |  |  |  |
| Total |  | 1,008 | 967 | 96 | 3.9 | $A$ |

Intersection:
Type:

Droubay Road \& 1000 North
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | L | 76 | 74 | 97 | 2.6 | A |
|  | T | 69 | 74 | 107 | 0.7 | A |
|  | Subtotal | 145 | 148 | 102 | 1.7 | A |
| SB | T | 195 | 195 | 100 | 0.9 | A |
|  | R | 31 | 30 | 98 | 0.3 | A |
|  | Subtotal | 226 | 225 | 100 | 0.8 | A |
| $E B$ | $L$ | 44 | 42 | 95 | 9.0 | A |
|  | T | 292 | 260 | 89 | 1.5 | A |
|  | R | 109 | 105 | 96 | 7.0 | A |
|  | Subtotal | 445 | 407 | 91 | 3.7 | A |
|  |  |  |  |  |  |  |
| Total |  | 816 | 780 | 96 | 2.5 | A |


|  | SimTraffic LOS Report |
| :--- | :--- |
|  |  |
| Project: | Tooele City Transportation Master Plan |
| Analysis Period: | Existing (2020) Background <br> Evening Peak Hour |
| Time Period: |  |

## Intersection: Droubay Road \& 970 North <br> Type: Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | T | 122 | 124 | 101 | 1.7 | A |
|  | R | 6 | 7 | 112 | 1.3 | A |
|  | Subtotal | 128 | 131 | 102 | 1.7 | A |
| SB | L | 65 | 67 | 103 | 2.2 | A |
|  | T | 239 | 232 | 97 | 0.7 | A |
|  | Subtotal | 304 | 299 | 98 | 1.0 | A |
| WB | $L$ | 9 | 10 | 108 | 6.1 | A |
|  | R | 23 | 24 | 103 | 2.9 | A |
|  | Subtotal | 32 | 34 | 106 | 3.8 | A |
|  |  |  |  |  |  |  |
| Total |  | 465 | 464 | 100 | 1.4 | $A$ |

Intersection:
Type:

Droubay Road \& Smelter Road
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | $L$ | 3 | 2 | 67 | 7.1 | A |
|  | T | 48 | 54 | 112 | 5.4 | A |
|  | R | 10 | 11 | 107 | 3.1 | A |
|  | Subtotal | 61 | 67 | 110 | 5.1 | A |
| SB | L | 10 | 9 | 88 | 6.4 | A |
|  | T | 139 | 135 | 97 | 6.7 | A |
|  | R | 99 | 96 | 97 | 4.3 | A |
|  | Subtotal | 248 | 240 | 97 | 5.7 | A |
| EB | L | 74 | 70 | 95 | 1.8 | A |
|  | T | 35 | 33 | 94 | 0.5 | A |
|  | R | 5 | 5 | 100 | 0.5 | A |
|  | Subtotal | 114 | 108 | 95 | 1.3 | A |
| WB | L | 5 | 4 | 80 | 1.6 | A |
|  | T | 20 | 21 | 106 | 0.2 | A |
|  | R | 3 | 3 | 100 | 0.0 | A |
|  | Subtotal | 28 | 28 | 100 | 0.4 | A |
| Total |  | 452 | 443 | 98 | 4.2 | $A$ |



Intersection: Coleman Street \& Utah Avenue
Type: Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | $L$ | 39 | 40 | 103 | 11.5 | B |
|  | T | 42 | 42 | 99 | 8.2 | A |
|  | R | 65 | 71 | 109 | 6.3 | A |
|  | Subtotal | 146 | 153 | 105 | 8.2 | A |
| SB | L | 9 | 9 | 100 | 9.2 | A |
|  | T | 38 | 36 | 95 | 10.6 | $B$ |
|  | R | 26 | 26 | 101 | 4.4 | A |
|  | Subtotal | 73 | 71 | 97 | 8.2 | A |
| EB | L | 30 | 32 | 107 | 2.7 | A |
|  | T | 257 | 267 | 104 | 0.8 | A |
|  | R | 48 | 52 | 108 | 0.4 | A |
|  | Subtotal | 335 | 351 | 105 | 0.9 | A |
| WB | L | 71 | 71 | 100 | 4.9 | A |
|  | T | 152 | 146 | 96 | 2.1 | A |
|  | R | 10 | 11 | 110 | 1.7 | A |
|  | Subtotal | 233 | 228 | 98 | 3.0 | A |
| Total |  | 788 | 803 | 102 | 3.5 | $A$ |

Intersection:
Type:

Coleman Street \& Vine Street
Unsignalized

| Approach | Movement | Demand Volume | Volume Served |  | Delay/Veh (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Avg | \% | Avg | LOS |
| NB | $L$ | 13 | 11 | 86 | 7.3 | A |
|  | T | 120 | 127 | 106 | 7.9 | A |
|  | R | 62 | 66 | 106 | 4.3 | A |
|  | Subtotal | 195 | 204 | 105 | 6.7 | A |
| SB | L | 21 | 18 | 86 | 7.1 | A |
|  | T | 128 | 132 | 103 | 6.5 | A |
|  | R | 11 | 11 | 102 | 3.5 | A |
|  | Subtotal | 160 | 161 | 101 | 6.4 | A |
| EB | L | 7 | 7 | 97 | 1.9 | A |
|  | T | 60 | 63 | 105 | 0.3 | A |
|  | R | 5 | 7 | 133 | 0.2 | A |
|  | Subtotal | 72 | 77 | 107 | 0.4 | A |
| WB | L | 83 | 80 | 96 | 3.9 | A |
|  | T | 78 | 74 | 95 | 2.4 | A |
|  | R | 16 | 16 | 102 | 1.7 | A |
|  | Subtotal | 177 | 170 | 96 | 3.0 | A |
| Total |  | 603 | 612 | 101 | 4.8 | $A$ |



1: Main Street (SR-36) \& 2400 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 3.6 | 0.2 | 0.1 | 1.4 | 0.3 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 1.0 | 0.1 | 0.2 | 2.1 | 0.1 | 0.0 | 0.4 | 0.5 | 0.0 | 0.2 | 3.6 |
| Total Del/Veh (s) | 70.0 | 76.0 | 18.4 | 70.4 | 74.1 | 2.2 | 30.4 | 1.9 | 0.6 | 11.2 | 8.0 |
| Vehicles Entered | 49 | 5 | 46 | 104 | 4 | 51 | 52 | 865 | 47 | 49 | 1620 |
| Vehicles Exited | 49 | 5 | 46 | 104 | 4 | 51 | 51 | 865 | 47 | 49 | 1621 |
| Hourly Exit Rate | 49 | 5 | 46 | 104 | 4 | 51 | 51 | 865 | 47 | 49 | 1621 |
| Input Volume | 49 | 4 | 45 | 104 | 2 | 50 | 50 | 888 | 44 | 50 | 1624 |
| \% of Volume | 99 | 125 | 102 | 100 | 200 | 101 | 101 | 97 | 106 | 98 | 100 |

## 1: Main Street (SR-36) \& 2400 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.1 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 8.2 |
| Total Del/Veh (s) | 10.0 |
| Vehicles Entered | 2936 |
| Vehicles Exited | 2936 |
| Hourly Exit Rate | 2936 |
| Input Volume | 2956 |
| \% of Volume | 99 |

## 2: Main Street (SR-36) \& 2200 North Performance by movement

| Movement | EBR | WBR | NBT | NBR | SBT | SBR | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 0.5 | 0.0 | 0.2 | 0.0 | 2.1 | 0.0 | 2.8 |
| Total Del/Veh (s) | 23.6 | 1.4 | 0.6 | 1.3 | 4.3 | 3.6 | 3.5 |
| Vehicles Entered | 77 | 5 | 958 | 41 | 1772 | 4 | 2857 |
| Vehicles Exited | 77 | 5 | 959 | 41 | 1772 | 4 | 2858 |
| Hourly Exit Rate | 77 | 5 | 959 | 41 | 1772 | 4 | 2858 |
| Input Volume | 80 | 5 | 977 | 40 | 1773 | 5 | 2881 |
| \% of Volume | 96 | 100 | 98 | 102 | 100 | 80 | 99 |

3: Main Street (SR-36) \& 2000 North Performance by movement

| Movement | EBL | EBR | NBL | NBT | SBT | SBR | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay $(\mathrm{hr})$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/veh $(\mathrm{s})$ | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay $(\mathrm{hr})$ | 2.4 | 2.4 | 3.5 | 0.2 | 5.5 | 0.3 | 14.2 |
| Total Del/Veh $(\mathrm{s})$ | 59.8 | 35.0 | 53.8 | 0.6 | 12.5 | 3.6 | 14.5 |
| Vehicles Entered | 143 | 238 | 230 | 1042 | 1581 | 268 | 3502 |
| Vehicles Exited | 142 | 240 | 228 | 1044 | 1582 | 268 | 3504 |
| Hourly Exit Rate | 142 | 240 | 228 | 1044 | 1582 | 268 | 3504 |
| Input Volume | 152 | 240 | 236 | 1069 | 1589 | 265 | 3551 |
| \% of Volume | 93 | 100 | 97 | 98 | 100 | 101 | 99 |

## 4: Aaron Drive/Hospital Access \& 2000 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied DelVVeh (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 |
| Total Delay (hr) | 0.0 | 0.1 | 0.0 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 |
| Total Del/Veh (s) | 2.6 | 1.1 | 0.4 | 4.0 | 1.8 | 0.6 | 13.3 | 14.1 | 5.3 | 10.0 | 9.9 | 3.9 |
| Vehicles Entered | 5 | 179 | 26 | 199 | 249 | 50 | 24 | 3 | 102 | 48 | 6 | 17 |
| Vehicles Exited | 5 | 179 | 26 | 199 | 248 | 50 | 24 | 3 | 102 | 48 | 6 | 17 |
| Hourly Exit Rate | 5 | 179 | 26 | 199 | 248 | 50 | 24 | 3 | 102 | 48 | 6 | 17 |
| Input Volume | 6 | 186 | 24 | 201 | 253 | 48 | 24 | 3 | 102 | 50 | 6 | 16 |
| \% of Volume | 80 | 96 | 109 | 99 | 98 | 104 | 101 | 100 | 100 | 96 | 96 | 105 |

## 4: Aaron Drive/Hospital Access \& 2000 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.0 |
| Total Delay (hr) | 0.8 |
| Total Del/Veh (s) | 3.3 |
| Vehicles Entered | 908 |
| Vehicles Exited | 907 |
| Hourly Exit Rate | 907 |
| Input Volume | 920 |
| \% of Volume | 99 |

5: Berra Boulevard \& 2000 North Performance by movement

|  |  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Movement | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Senied Delay (hr) | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| Denied Del/Veh (s) | 0.0 | 0.2 | 0.0 | 0.1 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 3.3 | 4.7 | 2.7 | 3.5 | 5.2 | 3.4 | 2.3 | 3.0 | 2.3 | 2.6 | 2.6 |
| Total Del/Veh (s) | 2 | 131 | 12 | 70 | 178 | 40 | 9 | 5 | 55 | 23 | 5 |
| Vehicles Entered | 2 | 130 | 12 | 70 | 177 | 40 | 9 | 5 | 55 | 23 | 5 |
| Vehicles Exited | 2 | 130 | 12 | 70 | 177 | 40 | 9 | 5 | 55 | 23 | 5 |
| Hourly Exit Rate | 3 | 133 | 10 | 72 | 180 | 40 | 8 | 4 | 56 | 26 | 5 |
| Input Volume | 67 | 98 | 117 | 97 | 98 | 100 | 109 | 125 | 99 | 89 | 100 |
| \% of Volume |  |  |  |  |  |  | 97 |  |  |  |  |

## 5: Berra Boulevard \& 2000 North Performance by movement

| Movement | All |
| :--- | :---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 0.6 |
| Total Del/Veh (s) | 4.1 |
| Vehicles Entered | 536 |
| Vehicles Exited | 535 |
| Hourly Exit Rate | 535 |
| Input Volume | 545 |
| $\%$ of Volume | 98 |

## 6: 400 West \& 2000 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) |  | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 |  | 0.1 | 0.1 | 3.5 | 0.1 |
| Total Delay (hr) | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Del/Veh (s) |  | 5.6 | 1.9 | 4.5 | 0.4 | 1.6 |  | 0.9 | 0.2 | 1.4 | 0.1 |
| Vehicles Entered | 0 | 2 | 2 | 61 | 127 | 4 | 0 | 9 | 38 | 4 | 11 |
| Vehicles Exited | 0 | 2 | 2 | 62 | 126 | 3 | 0 | 9 | 38 | 4 | 11 |
| Hourly Exit Rate | 0 | 2 | 2 | 62 | 126 | 3 | 0 | 9 | 38 | 4 | 11 |
| Input Volume | 1 | 2 | 1 | 63 | 130 | 3 | 1 | 8 | 40 | 4 | 10 |
| \% of Volume | 0 | 100 | 200 | 99 | 97 | 100 | 0 | 109 | 95 | 100 | 107 |

## 6: 400 West \& 2000 North Performance by movement

| Movement | All |
| :--- | :---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 0.1 |
| Total Del/Veh (s) | 1.5 |
| Vehicles Entered | 259 |
| Vehicles Exited | 258 |
| Hourly Exit Rate | 258 |
| Input Volume | 264 |
| \% of Volume | 98 |

7: Main Street (SR-36) \& 1280 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.0 | 0.5 | 3.6 | 3.7 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 |
| Total Delay (hr) | 5.5 | 0.9 | 2.1 | 1.9 | 0.4 | 0.7 | 2.8 | 3.9 | 0.2 | 0.7 | 6.4 |
| Total Del/Veh (s) | 70.0 | 61.4 | 34.2 | 50.7 | 43.5 | 22.1 | 64.0 | 12.3 | 12.0 | 20.9 | 16.1 |
| Vehicles Entered | 275 | 49 | 216 | 133 | 31 | 119 | 157 | 1153 | 68 | 116 | 1405 |
| Vehicles Exited | 276 | 49 | 214 | 133 | 31 | 118 | 154 | 1143 | 68 | 116 | 1407 |
| Hourly Exit Rate | 276 | 49 | 214 | 133 | 31 | 118 | 154 | 1143 | 68 | 116 | 1407 |
| Input Volume | 279 | 50 | 207 | 134 | 30 | 125 | 154 | 1156 | 77 | 123 | 1419 |
| \% of Volume | 99 | 98 | 103 | 99 | 102 | 94 | 100 | 99 | 89 | 94 | 99 |

## 7: Main Street (SR-36) \& 1280 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.2 |
| Denied Del/Veh (s) | 0.2 |
| Total Delay (hr) | 26.1 |
| Total Del/Veh (s) | 23.2 |
| Vehicles Entered | 4002 |
| Vehicles Exited | 3989 |
| Hourly Exit Rate | 3989 |
| Input Volume | 4026 |
| \% of Volume | 99 |

## 8: Main Street (SR-36) \& 1000 North (SR-112)/1000 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 8.1 | 28.3 |
| Denied Del/Veh (s) | 0.2 | 0.1 | 0.1 | 1.6 | 1.1 | 0.7 | 0.3 | 0.0 | 0.3 | 52.9 | 56.0 |
| (s) | 2.5 | 5.7 | 3.6 | 4.6 | 3.2 | 1.0 | 3.1 | 14.1 | 1.0 | 20.4 | 33.1 |
| Total Delay (hr) | 71.9 | 112.8 | 99.6 | 96.2 | 59.5 | 16.4 | 66.1 | 47.3 | 26.7 | 139.9 | 68.5 |
| Total Del/Veh (s) | 122 | 178 | 125 | 171 | 189 | 211 | 168 | 1055 | 134 | 517 | 1715 |
| Vehicles Entered | 121 | 174 | 122 | 168 | 190 | 211 | 164 | 1046 | 133 | 490 | 1684 |
| Vehicles Exited | 121 | 174 | 122 | 168 | 190 | 211 | 164 | 1046 | 133 | 490 | 1684 |
| Hourly Exit Rate | 122 | 174 | 131 | 170 | 189 | 210 | 167 | 1055 | 134 | 549 | 1814 |
| Input Volume | 99 | 100 | 93 | 99 | 101 | 100 | 98 | 99 | 99 | 89 | 93 |
| \% of Volume |  |  |  |  |  |  |  |  |  | 97 |  |

## 8: Main Street (SR-36) \& 1000 North (SR-112)/1000 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 38.0 |
| Denied Del/Veh (s) | 28.4 |
| Total Delay (hr) | 93.7 |
| Total Del/Veh (s) | 71.0 |
| Vehicles Entered | 4673 |
| Vehicles Exited | 4589 |
| Hourly Exit Rate | 4589 |
| Input Volume | 4802 |
| \% of Volume | 96 |

9: 200 West \& 1000 North (SR-112) Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR \(~\left(\begin{array}{lrrrrrr} <br>

\hline Denied Delay (hr) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 <br>
0.0 \& 0.0 \& 0.1 \& 0.0 \& 0.1 \& 0.2 <br>
Denied Del/Veh (s) \& 0.0 \& 0.0 \& 0.1 \& 0.0 \& 0.0 \& 0.0 <br>
\hline\end{array}\right.\)

## 9: 200 West \& 1000 North (SR-112) Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.4 |
| Denied DelVVeh (s) | 1.0 |
| Total Delay (hr) | 5.8 |
| Total Del/Veh (s) | 13.7 |
| Vehicles Entered | 1522 |
| Vehicles Exited | 1521 |
| Hourly Exit Rate | 1521 |
| Input Volume | 1540 |
| \% of Volume | 99 |

10: 600 West \& 1000 North (SR-112) Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.0 | 0.2 | 0.3 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 |
| Total Delay (hr) | 0.1 | 0.2 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.0 |
| Total Del/Veh (s) | 3.1 | 2.2 | 1.2 | 3.5 | 3.3 | 2.4 | 6.8 | 10.1 | 4.0 | 11.9 | 12.5 |
| Vehicles Entered | 65 | 335 | 7 | 42 | 296 | 68 | 3 | 8 | 46 | 65 | 13 |
| Vehicles Exited | 65 | 334 | 6 | 42 | 298 | 69 | 2 | 8 | 46 | 65 | 13 |
| Hourly Exit Rate | 65 | 334 | 6 | 42 | 298 | 69 | 2 | 8 | 46 | 65 | 13 |
| Input Volume | 63 | 336 | 7 | 45 | 302 | 67 | 3 | 9 | 44 | 66 | 11 |
| \% of Volume | 104 | 99 | 83 | 93 | 99 | 103 | 67 | 86 | 104 | 98 | 116 |

## 10: 600 West \& 1000 North (SR-112) Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 1.1 |
| Total Del/Veh (s) | 3.8 |
| Vehicles Entered | 1025 |
| Vehicles Exited | 1025 |
| Hourly Exit Rate | 1025 |
| Input Volume | 1030 |
| \% of Volume | 99 |

11: Industrial Loop Road \& Utah Avenue Performance by movement

| Movement | WBL2 | WBL | WBR | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NER | NER2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.6 | 0.1 | 0.6 | 3.4 | 0.4 | 3.0 | 1.6 | 0.6 | 1.6 | 3.3 | 0.3 | 3.3 |
| Total Delay (hr) | 0.8 | 0.3 | 0.4 | 0.0 | 0.6 | 0.1 | 0.9 | 0.6 | 0.0 | 0.4 | 0.6 | 0.0 |
| Total Del/Veh (s) | 31.9 | 29.5 | 5.6 | 9.5 | 7.4 | 2.8 | 15.8 | 6.8 | 2.2 | 30.3 | 31.0 | 5.5 |
| Vehicles Entered | 86 | 32 | 256 | 5 | 271 | 96 | 198 | 318 | 12 | 42 | 72 | 17 |
| Vehicles Exited | 86 | 32 | 255 | 6 | 272 | 96 | 199 | 320 | 12 | 42 | 72 | 17 |
| Hourly Exit Rate | 86 | 32 | 255 | 6 | 272 | 96 | 199 | 320 | 12 | 42 | 72 | 17 |
| Input Volume | 87 | 33 | 252 | 5 | 267 | 96 | 199 | 314 | 10 | 43 | 71 | 20 |
| \% of Volume | 99 | 97 | 101 | 114 | 102 | 100 | 100 | 102 | 120 | 98 | 101 | 86 |

## 11: Industrial Loop Road \& Utah Avenue Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.4 |
| Denied Del/Veh (s) | 1.0 |
| Total Delay (hr) | 4.6 |
| Total Del/veh (s) | 11.7 |
| Vehicles Entered | 1405 |
| Vehicles Exited | 1409 |
| Hourly Exit Rate | 1409 |
| Input Volume | 1396 |
| $\%$ of Volume | 101 |

12: Main Street (SR-36) \& 600 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 0.5 | 0.2 | 0.3 | 0.0 | 0.3 | 0.2 | 0.3 | 1.7 | 0.1 | 0.3 | 4.6 |
| Total Del/Veh (s) | 39.9 | 41.9 | 22.5 | 39.6 | 40.7 | 16.3 | 21.8 | 4.9 | 4.9 | 20.3 | 8.9 |
| Vehicles Entered | 47 | 18 | 42 | 2 | 27 | 40 | 44 | 1286 | 37 | 57 | 1852 |
| Vehicles Exited | 46 | 18 | 42 | 2 | 26 | 40 | 43 | 1285 | 37 | 56 | 1841 |
| Hourly Exit Rate | 46 | 18 | 42 | 2 | 26 | 40 | 43 | 1285 | 37 | 56 | 1841 |
| Input Volume | 53 | 20 | 40 | 2 | 30 | 38 | 45 | 1284 | 40 | 62 | 1983 |
| \% of Volume | 87 | 91 | 104 | 100 | 87 | 105 | 96 | 100 | 92 | 90 | 93 |

## 12: Main Street (SR-36) \& 600 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.0 |
| Total Delay (hr) | 8.7 |
| Total Del/Veh (s) | 8.8 |
| Vehicles Entered | 3518 |
| Vehicles Exited | 3501 |
| Hourly Exit Rate | 3501 |
| Input Volume | 3667 |
| \% of Volume | 95 |

## 13: Main Street (SR-36) \& 400 North Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.4 | 3.7 | 3.8 | 0.5 | 3.8 | 3.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay $(\mathrm{hr})$ | 1.0 | 0.2 | 0.3 | 1.1 | 0.3 | 0.6 | 0.1 | 3.5 | 0.0 | 0.5 | 3.1 |
| Total Del/Veh (s) | 40.4 | 34.2 | 13.6 | 43.6 | 34.6 | 17.3 | 16.5 | 10.1 | 10.3 | 16.3 | 10.0 |
| Vehicles Entered | 90 | 22 | 84 | 88 | 27 | 125 | 25 | 1246 | 16 | 106 | 1128 |
| Vehicles Exited | 90 | 21 | 84 | 88 | 27 | 124 | 26 | 1243 | 16 | 105 | 1119 |
| Hourly Exit Rate | 90 | 21 | 84 | 88 | 27 | 124 | 26 | 1243 | 16 | 105 | 1119 |
| Input Volume | 91 | 23 | 81 | 90 | 26 | 122 | 26 | 1249 | 17 | 115 | 1202 |
| \% of Volume | 99 | 91 | 104 | 98 | 104 | 102 | 100 | 100 | 96 | 91 | 93 |

## 13: Main Street (SR-36) \& 400 North Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.3 |
| Denied Del/Veh (s) | 0.4 |
| Total Delay (hr) | 11.0 |
| Total Del/Veh (s) | 13.0 |
| Vehicles Entered | 3006 |
| Vehicles Exited | 2992 |
| Hourly Exit Rate | 2992 |
| Input Volume | 3094 |
| \% of Volume | 97 |

## 14: Main Street (SR-36) \& Utah Avenue Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.0 | 0.1 | 0.2 | 0.4 | 3.9 | 3.9 | 0.4 | 0.0 | 0.4 | 0.0 | 0.0 |
| Total Delay $(\mathrm{hr})$ | 2.6 | 0.4 | 1.0 | 0.6 | 0.5 | 0.4 | 0.4 | 3.5 | 0.0 | 0.5 | 3.7 |
| Total Del/Veh (s) | 46.7 | 36.5 | 21.6 | 40.2 | 53.8 | 21.3 | 15.6 | 12.0 | 5.0 | 17.5 | 11.5 |
| Vehicles Entered | 191 | 40 | 164 | 52 | 34 | 59 | 82 | 11045 | 28 | 108 | 1140 |
| Vehicles Exited | 190 | 40 | 163 | 52 | 34 | 59 | 82 | 1043 | 28 | 108 | 1141 |
| Hourly Exit Rate | 190 | 40 | 163 | 52 | 34 | 59 | 82 | 1043 | 28 | 108 | 1141 |
| Input Volume | 177 | 41 | 161 | 50 | 35 | 60 | 84 | 1058 | 26 | 111 | 1216 |
| \% of Volume | 107 | 97 | 101 | 103 | 97 | 99 | 97 | 99 | 109 | 97 | 94 |

## 14: Main Street (SR-36) \& Utah Avenue Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.1 |
| Denied Del/Veh (s) | 0.2 |
| Total Delay (hr) | 13.7 |
| Total Del/Veh (s) | 16.3 |
| Vehicles Entered | 2990 |
| Vehicles Exited | 2987 |
| Hourly Exit Rate | 2987 |
| Input Volume | 3071 |
| \% of Volume | 97 |

## 15: Main Street (SR-36) \& Vine Street Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.2 | 0.5 | 0.4 | 0.7 | 3.7 | 3.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 1.6 | 0.5 | 0.6 | 0.9 | 0.5 | 0.5 | 0.2 | 1.9 | 0.1 | 0.2 | 2.2 |
| Total Del/Veh (s) | 40.4 | 46.9 | 20.8 | 34.9 | 44.1 | 8.9 | 15.2 | 9.3 | 7.1 | 11.6 | 7.5 |
| Vehicles Entered | 142 | 38 | 100 | 89 | 43 | 194 | 43 | 719 | 43 | 57 | 1061 |
| Vehicles Exited | 141 | 38 | 98 | 89 | 42 | 194 | 43 | 718 | 43 | 58 | 1058 |
| Hourly Exit Rate | 141 | 38 | 98 | 89 | 42 | 194 | 43 | 718 | 43 | 58 | 1058 |
| Input Volume | 147 | 38 | 94 | 93 | 43 | 195 | 46 | 725 | 40 | 61 | 1116 |
| \% of Volume | 96 | 99 | 104 | 96 | 97 | 99 | 93 | 99 | 107 | 95 | 95 |

## 15: Main Street (SR-36) \& Vine Street Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.3 |
| Denied Del/Veh (s) | 0.4 |
| Total Delay (hr) | 9.3 |
| Total Del/Veh (s) | 12.7 |
| Vehicles Entered | 2609 |
| Vehicles Exited | 2602 |
| Hourly Exit Rate | 2602 |
| Input Volume | 2680 |
| \% of Volume | 97 |

16: Main Street (SR-36) \& 520 South/Skyline Drive Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.5 | 0.2 | 0.6 | 0.0 | 0.0 |
| Total Delay (hr) | 0.1 | 0.0 | 0.0 | 1.1 | 0.1 | 2.1 | 0.0 | 0.5 | 0.0 | 0.4 | 0.7 |
| Total Del/Veh (s) | 38.6 | 51.3 | 11.7 | 127.6 | 105.3 | 69.0 | 7.5 | 3.2 | 2.9 | 8.4 | 2.5 |
| Vehicles Entered | 12 | 1 | 4 | 30 | 4 | 109 | 6 | 565 | 53 | 166 | 942 |
| Vehicles Exited | 12 | 1 | 4 | 30 | 4 | 108 | 6 | 565 | 53 | 163 | 936 |
| Hourly Exit Rate | 12 | 1 | 4 | 30 | 4 | 108 | 6 | 565 | 53 | 163 | 936 |
| Input Volume | 12 | 1 | 3 | 31 | 3 | 110 | 7 | 570 | 52 | 173 | 985 |
| \% of Volume | 102 | 100 | 133 | 96 | 133 | 98 | 83 | 99 | 101 | 94 | 95 |

## 16: Main Street (SR-36) \& 520 South/Skyline Drive Performance by movement

| Movement | All |
| :--- | ---: |
| Denied Delay (hr) | 0.1 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 5.1 |
| Total Del/Veh (s) | 9.5 |
| Vehicles Entered | 1908 |
| Vehicles Exited | 1898 |
| Hourly Exit Rate | 1898 |
| Input Volume | 1965 |
| \% of Volume | 97 |

## 17: Main Street (SR-36) \& Commander Boulevard Performance by movement

| Movement | EBL | EBR | NEL | NET | SWT | SWR | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 2.3 | 0.2 | 0.0 | 0.0 | 0.1 |
| Total Delay (hr) | 0.4 | 0.0 | 0.0 | 0.1 | 0.5 | 0.0 | 1.1 |
| Total Del/Veh (s) | 9.3 | 1.5 | 1.6 | 1.4 | 3.3 | 5.1 | 3.9 |
| Vehicles Entered | 167 | 19 | 5 | 230 | 540 | 15 | 976 |
| Vehicles Exited | 167 | 19 | 5 | 230 | 531 | 15 | 967 |
| Hourly Exit Rate | 167 | 19 | 5 | 230 | 531 | 15 | 967 |
| Input Volume | 165 | 16 | 6 | 230 | 574 | 16 | 1008 |
| \% of Volume | 101 | 117 | 87 | 100 | 92 | 92 | 96 |

## 18: Droubay Road \& 1000 North Performance by movement

| Movement | EBL | EBT | EBR | NBL | NBT | SBT | SBR | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied DelVeh (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.1 |
| Total Delay (hr) | 0.1 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.5 |
| Total Del/Veh (s) | 9.0 | 1.5 | 7.0 | 2.6 | 0.7 | 0.9 | 0.3 | 2.5 |
| Vehicles Entered | 42 | 263 | 107 | 73 | 74 | 194 | 30 | 783 |
| Vehicles Exited | 42 | 260 | 105 | 74 | 74 | 195 | 30 | 780 |
| Hourly Exit Rate | 42 | 260 | 105 | 74 | 74 | 195 | 30 | 780 |
| Input Volume | 44 | 292 | 109 | 76 | 69 | 195 | 31 | 816 |
| \% of Volume | 95 | 89 | 96 | 97 | 107 | 100 | 98 | 96 |

19: Droubay Road \& 970 North Performance by movement

| Movement | WBL | WBR | NBT | NBR | SBL | SBT | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 |
| Total Delay (hr) | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 |
| Total Del/Veh (s) | 6.1 | 2.9 | 1.7 | 1.3 | 2.2 | 0.7 | 1.4 |
| Vehicles Entered | 10 | 24 | 124 | 8 | 67 | 233 | 466 |
| Vehicles Exited | 10 | 24 | 124 | 7 | 67 | 232 | 464 |
| Hourly Exit Rate | 10 | 24 | 124 | 7 | 67 | 232 | 464 |
| Input Volume | 9 | 23 | 122 | 6 | 65 | 239 | 465 |
| \% of Volume | 108 | 103 | 101 | 112 | 103 | 97 | 100 |

20: Droubay Road \& Smelter Road Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 |
| Total Delay $(\mathrm{hr})$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.3 |
| Total Del/Veh (s) | 1.8 | 0.5 | 0.5 | 1.6 | 0.2 | 0.0 | 7.1 | 5.4 | 3.1 | 6.4 | 6.7 |
| Vehicles Entered | 69 | 33 | 5 | 4 | 21 | 3 | 2 | 54 | 11 | 9.3 | 137 |
| Vehicles Exited | 70 | 33 | 5 | 4 | 21 | 3 | 2 | 54 | 11 | 9 | 135 |
| Hourly Exit Rate | 70 | 33 | 5 | 4 | 21 | 3 | 2 | 54 | 11 | 9 | 135 |
| Input Volume | 74 | 35 | 5 | 5 | 20 | 3 | 3 | 48 | 10 | 10 | 139 |
| \% of Volume | 95 | 94 | 100 | 80 | 106 | 100 | 67 | 112 | 107 | 88 | 97 |

## 20: Droubay Road \& Smelter Road Performance by movement

| Movement | All |
| :--- | :---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 0.5 |
| Total Del/Veh (s) | 4.2 |
| Vehicles Entered | 445 |
| Vehicles Exited | 443 |
| Hourly Exit Rate | 443 |
| Input Volume | 452 |
| \% of Volume | 98 |

## 21: Coleman Street \& Utah Avenue Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.7 | 3.3 | 3.3 | 0.1 | 0.3 | 0.8 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 |
| Total Delay (hr) | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 |
| Total Del/Veh (s) | 2.7 | 0.8 | 0.4 | 4.9 | 2.1 | 1.7 | 11.5 | 8.2 | 6.3 | 9.2 | 10.6 |
| Vehicles Entered | 32 | 268 | 52 | 71 | 147 | 11 | 40 | 42 | 71 | 9 | 36 |
| Vehicles Exited | 32 | 267 | 52 | 71 | 146 | 11 | 40 | 42 | 71 | 9 | 36 |
| Hourly Exit Rate | 32 | 267 | 52 | 71 | 146 | 11 | 40 | 42 | 71 | 9 | 36 |
| Input Volume | 30 | 257 | 48 | 71 | 152 | 10 | 39 | 42 | 65 | 9 | 38 |
| \% of Volume | 107 | 104 | 108 | 100 | 96 | 110 | 103 | 99 | 109 | 100 | 95 |

## 21: Coleman Street \& Utah Avenue Performance by movement

| Movement | All |
| :--- | :---: |
| Denied Delay (hr) | 0.3 |
| Denied Del/Veh (s) | 1.4 |
| Total Delay (hr) | 0.8 |
| Total Del/Veh (s) | 3.5 |
| Vehicles Entered | 805 |
| Vehicles Exited | 803 |
| Hourly Exit Rate | 803 |
| Input Volume | 788 |
| \% of Volume | 102 |

22: Coleman Street \& Vine Street Performance by movement

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SBR |  |  |  |  |  |  |  |  |  |  |  |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.1 | 0.1 | 2.8 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 |
| Total Delay (hr) | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.3 | 0.1 | 0.0 | 0.2 |
| Total Del/Veh (s) | 1.9 | 0.3 | 0.2 | 3.9 | 2.4 | 1.7 | 7.3 | 7.9 | 4.3 | 7.1 | 6.5 |
| Vehicles Entered | 7 | 62 | 7 | 80 | 75 | 16 | 11 | 128 | 66 | 18 | 132 |
| Vehicles Exited | 7 | 63 | 7 | 80 | 74 | 16 | 11 | 127 | 66 | 18 | 132 |
| Hourly Exit Rate | 7 | 63 | 7 | 80 | 74 | 16 | 11 | 127 | 66 | 18 | 132 |
| Input Volume | 7 | 60 | 5 | 83 | 78 | 16 | 13 | 120 | 62 | 21 | 128 |
| \% of Volume | 97 | 105 | 133 | 96 | 95 | 102 | 86 | 106 | 106 | 86 | 103 |

## 22: Coleman Street \& Vine Street Performance by movement

| Movement | All |
| :--- | :---: |
| Denied Delay (hr) | 0.0 |
| Denied Del/Veh (s) | 0.1 |
| Total Delay (hr) | 0.8 |
| Total Del/Veh (s) | 4.8 |
| Vehicles Entered | 613 |
| Vehicles Exited | 612 |
| Hourly Exit Rate | 612 |
| Input Volume | 603 |
| \% of Volume | 101 |

39: Broadway Avenue \& 1000 North Performance by movement

| Movement | EBT | EBR | WBL | WBT | NBL | NBR | All |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denied Delay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Denied Del/Veh (s) | 0.0 | 0.0 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 |
| Total Delay (hr) | 0.4 | 0.1 | 0.0 | 0.1 | 0.3 | 0.1 | 1.0 |
| Total Del/Veh (s) | 2.4 | 1.9 | 5.7 | 1.3 | 12.3 | 8.4 | 3.0 |
| Vehicles Entered | 651 | 137 | 20 | 294 | 90 | 27 | 1219 |
| Vehicles Exited | 650 | 137 | 20 | 295 | 90 | 27 | 1219 |
| Hourly Exit Rate | 650 | 137 | 20 | 295 | 90 | 27 | 1219 |
| Input Volume | 705 | 145 | 21 | 295 | 89 | 27 | 1281 |
| \% of Volume | 92 | 94 | 96 | 100 | 101 | 101 | 95 |

Total Zone Performance

|  |  |
| :--- | ---: |
| Denied Delay (hr) | 40.6 |
| Denied Del/Veh (s) | 14.0 |
| Total Delay (hr) | 220.8 |
| Total Del/Veh (s) | 73.4 |
| Vehicles Entered | 10288 |
| Vehicles Exited | 10094 |
| Hourly Exit Rate | 10094 |
| Input Volume | 66645 |
| \% of Volume | 15 |

Intersection: 1: Main Street (SR-36) \& 2400 North

| Movement | EB | EB | EB | WB | WB | NB | NB | NB | NB | SB | SB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | L | T | R | L | T | L | T | T | R | L | T | T |
| Maximum Queue (ft) | 98 | 50 | 82 | 178 | 47 | 105 | 60 | 74 | 15 | 62 | 295 | 280 |
| Average Queue (ft) | 46 | 6 | 29 | 95 | 4 | 31 | 11 | 20 | 2 | 21 | 109 | 116 |
| 95th Queue (ft) | 89 | 29 | 63 | 157 | 26 | 73 | 39 | 55 | 9 | 50 | 218 | 228 |
| Link Distance (ft) |  | 1091 | 1091 |  | 2348 |  | 1234 | 1234 | 1234 |  | 926 | 926 |
| Upstream BIk Time (\%) |  |  |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 125 |  |  | 145 |  | 540 |  |  |  | 500 |  |  |
| Storage Blk Time (\%) | 0 |  |  | 3 | 0 |  |  |  |  |  |  | 0 |
| Queuing Penalty (veh) | 0 |  |  | 2 | 0 |  |  |  |  |  |  | 0 |

## Intersection: 1: Main Street (SR-36) \& 2400 North

| Movement | SB |
| :--- | ---: |
| Directions Served | R |
| Maximum Queue (ft) | 40 |
| Average Queue (ft) | 6 |
| 95th Queue (ft) | 27 |
| Link Distance (ft) |  |
| Upstream Blk Time (\%) |  |
| Queuing Penalty (veh) |  |
| Storage Bay Dist (ft) | 335 |
| Storage Blk Time (\%) |  |
| Queuing Penalty (veh) |  |

## Intersection: 2: Main Street (SR-36) \& 2200 North

| Movement | EB | B33 | SB |
| :--- | ---: | ---: | ---: |
| Directions Served | R | T | TR |
| Maximum Queue (ft) | 117 | 2 | 4 |
| Average Queue (ft) | 46 | 0 | 0 |
| 95th Queue (ft) | 89 | 2 | 4 |
| Link Distance (ft) | 388 | 882 | 1234 |
| Upstream Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  |  |
| Storage Bay Dist (ft) |  |  |  |
| Storage Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  |  |

Intersection: 3: Main Street (SR-36) \& 2000 North

| Movement | EB | EB | EB | NB | NB | SB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | L | R | L | L | T | T | R |
| Maximum Queue (ft) | 182 | 274 | 270 | 281 | 149 | 353 | 372 | 74 |
| Average Queue (ft) | 54 | 94 | 131 | 149 | 40 | 160 | 169 | 30 |
| 95th Queue (ft) | 121 | 193 | 226 | 245 | 103 | 297 | 322 | 61 |
| Link Distance (ft) |  | 382 |  |  |  | 882 | 882 |  |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  | 400 |
| Storage Bay Dist (ft) | 245 |  | 175 | 300 | 300 |  | 0 |  |
| Storage Blk Time (\%) | 0 | 1 | 5 | 0 |  |  | 1 |  |

## Intersection: 4: Aaron Drive/Hospital Access \& 2000 North

| Movement | EB | EB | WB | WB | NB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | TR | L | T | LTR | L | TR |
| Maximum Queue (ft) | 13 | 2 | 79 | 39 | 99 | 60 | 36 |
| Average Queue (ft) | 1 | 0 | 19 | 1 | 46 | 21 | 11 |
| 95th Queue (ft) | 8 | 2 | 53 | 23 | 79 | 47 | 29 |
| Link Distance (ft) |  | 1313 |  | 382 | 641 | 155 | 155 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 155 |  | 60 |  |  |  |  |
| Storage Blk Time (\%) |  |  | 0 | 0 |  |  |  |
| Queuing Penalty (veh) |  |  | 1 | 0 |  |  |  |

Intersection: 5: Berra Boulevard \& 2000 North

| Movement | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Directions Served | LTR | LTR | LTR | LTR |
| Maximum Queue (ft) | 47 | 40 | 51 | 42 |
| Average Queue (ft) | 9 | 4 | 7 | 6 |
| 95th Queue (ft) | 34 | 22 | 31 | 28 |
| Link Distance (ft) | 2513 | 1313 | 1784 | 1277 |
| Upstream Blk Time (\%) |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |
| Storage Bay Dist (ft) |  |  |  |  |
| Storage Blk Time (\%) |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |

Intersection: 6: 400 West \& 2000 North

| Movement | EB | WB | WB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Directions Served | LTR | L | TR | L |
| Maximum Queue (ft) | 30 | 58 | 31 | 6 |
| Average Queue (ft) | 3 | 28 | 6 | 0 |
| 95th Queue (ft) | 19 | 52 | 25 | 4 |
| Link Distance (ft) | 658 |  | 2513 |  |
| Upstream Blk Time (\%) |  |  |  |  |
| Queuing Penalty (veh) |  | 80 |  | 125 |
| Storage Bay Dist (ft) |  | 0 |  |  |
| Storage Blk Time (\%) |  | 0 |  |  |

Intersection: 7: Main Street (SR-36) \& 1280 North

| Movement | EB | EB | EB | B37 | WB | WB | NB | NB | NB | SB | SB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | L | T | R | T | L | TR | L | T | TR | L | T | T |
| Maximum Queue (ft) | 130 | 568 | 225 | 92 | 271 | 175 | 227 | 267 | 270 | 222 | 467 | 471 |
| Average Queue (ft) | 123 | 298 | 155 | 8 | 121 | 85 | 105 | 85 | 85 | 60 | 178 | 177 |
| 95th Queue (ft) | 143 | 569 | 276 | 61 | 224 | 169 | 192 | 208 | 211 | 138 | 355 | 363 |
| Link Distance (ft) |  | 536 |  | 399 | 704 |  |  | 1957 | 1957 |  | 1102 | 1102 |
| Upstream Blk Time (\%) |  | 3 |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  | 0 |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 70 |  | 125 |  |  | 100 | 100 |  |  | 105 |  |  |
| Storage Blk Time (\%) | 61 | 5 | 5 |  | 19 | 7 | 22 | 3 |  | 1 | 20 | 18 |
| Queuing Penalty (veh) | 158 | 23 | 17 |  | 29 | 10 | 99 | 5 |  | 7 | 24 | 50 |

## Intersection: 7: Main Street (SR-36) \& 1280 North

| Movement | SB |
| :--- | ---: |
| Directions Served | R |
| Maximum Queue (ft) | 243 |
| Average Queue (ft) | 64 |
| 95th Queue (ft) | 180 |
| Link Distance (ft) |  |
| Upstream Blk Time (\%) |  |
| Queuing Penalty (veh) |  |
| Storage Bay Dist (ft) | 105 |
| Storage Blk Time (\%) | 0 |
| Queuing Penalty (veh) | 3 |

Intersection: 8: Main Street (SR-36) \& 1000 North (SR-112)/1000 North

| Movement | EB | EB | WB | WB | WB | NB | NB | NB | NB | SB | SB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | L | TR | L | T | R | L | T | T | R | L | T | T |
| Maximum Queue (ft) | 401 | 668 | 278 | 412 | 185 | 419 | 592 | 593 | 240 | 415 | 1453 | 1449 |
| Average Queue (ft) | 156 | 335 | 167 | 180 | 75 | 187 | 370 | 381 | 139 | 396 | 953 | 932 |
| 95th Queue (ft) | 390 | 652 | 280 | 338 | 145 | 394 | 540 | 555 | 308 | 479 | 1556 | 1556 |
| Link Distance (ft) |  | 1218 |  | 698 | 698 |  | 3047 | 3047 |  |  | 1957 | 1957 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 305 |  | 140 |  |  | 280 |  |  | 100 | 275 |  |  |
| Storage Blk Time (\%) |  | 25 | 33 | 16 |  | 1 | 20 | 47 | 0 | 56 | 20 | 38 |
| Queuing Penalty (veh) |  | 31 | 62 | 28 |  | 3 | 34 | 63 | 2 | 508 | 110 | 33 |

Intersection: 8: Main Street (SR-36) \& 1000 North (SR-112)/1000 North

| Movement | SB |
| :--- | ---: |
| Directions Served | R |
| Maximum Queue (ft) | 240 |
| Average Queue (ft) | 63 |
| 95th Queue (ft) | 215 |
| Link Distance (ft) |  |
| Upstream Blk Time (\%) |  |
| Queuing Penalty (veh) |  |
| Storage Bay Dist (ft) | 100 |
| Storage Blk Time (\%) | 0 |
| Queuing Penalty (veh) | 0 |

Intersection: 9: 200 West \& 1000 North (SR-112)

| Movement | EB | EB | WB | WB | NB | NB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | TR | L | TR | L | TR | L | TR |
| Maximum Queue (ft) | 155 | 153 | 159 | 164 | 100 | 131 | 217 | 195 |
| Average Queue (ft) | 63 | 58 | 69 | 55 | 42 | 65 | 61 | 104 |
| 95th Queue (ft) | 120 | 118 | 131 | 122 | 85 | 114 | 140 | 182 |
| Link Distance (ft) | 3902 |  |  | 1218 | 838 |  | 1174 |  |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) |  | 305 | 300 |  |  | 150 |  | 155 |
| Storage Blk Time (\%) |  |  |  | 0 |  | 0 | 0 | 2 |

Intersection: 10: 600 West \& 1000 North (SR-112)

| Movement | EB | WB | WB | NB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | L | L | TR | LTR | LTR |
| Maximum Queue (ft) | 42 | 31 | 2 | 59 | 106 |
| Average Queue (ft) | 13 | 8 | 0 | 28 | 47 |
| 95th Queue (ft) | 37 | 28 | 2 | 49 | 84 |
| Link Distance (ft) | 4712 | 3902 |  | 1546 | 646 |
| Upstream BIk Time (\%) |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |
| Storage Bay Dist (ft) 310 |  |  |  |  |  |
| Storage BIk Time (\%) |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |

Intersection: 11: Industrial Loop Road \& Utah Avenue

| Movement | WB | WB | WB | NB | NB | NB | SB | SB | SB | NE | NE | NE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | < | L | R | L | T | R | L | T | R | L | R | > |
| Maximum Queue (ft) | 135 | 85 | 111 | 30 | 134 | 58 | 217 | 119 | 34 | 89 | 133 | 53 |
| Average Queue (ft) | 57 | 23 | 55 | 3 | 46 | 15 | 69 | 44 | 3 | 31 | 45 | 10 |
| 95th Queue (ft) | 110 | 61 | 86 | 18 | 105 | 41 | 150 | 97 | 18 | 69 | 98 | 34 |
| Link Distance (ft) | 2297 |  |  | 2318 |  | 3414 |  |  | 1465 |  |  |  |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) | 225 |  | 500 | 130 |  | 290 | 550 |  | 200 | 150 |  | 150 |
| Storage Bik Time (\%) |  |  |  |  | 0 |  |  |  |  |  | 0 |  |
| Queuing Penalty (veh) |  |  |  |  | 0 |  |  |  |  |  | 0 |  |

Intersection: 12: Main Street (SR-36) \& 600 North

| Movement | EB | WB | NB | NB | NB | SB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | LTR | LTR | L | T | TR | L | T | TR |
| Maximum Queue (ft) | 167 | 120 | 85 | 149 | 157 | 89 | 222 | 247 |
| Average Queue (ft) | 71 | 45 | 28 | 48 | 63 | 31 | 69 | 76 |
| 95th Queue (ft) | 134 | 91 | 64 | 111 | 125 | 70 | 164 | 174 |
| Link Distance (ft) | 770 | 765 |  | 1398 | 1398 |  | 3047 | 3047 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) |  |  | 150 |  |  | 150 |  |  |
| Storage Blk Time (\%) |  |  |  | 0 |  |  | 1 |  |
| Queuing Penalty (veh) |  |  |  | 0 |  |  | 0 |  |

Intersection: 13: Main Street (SR-36) \& 400 North

| Movement | EB | EB | WB | WB | NB | NB | NB | SB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | TR | L | TR | L | T | TR | L | T | TR |
| Maximum Queue (ft) | 168 | 139 | 193 | 171 | 59 | 288 | 304 | 144 | 318 | 342 |
| Average Queue (ft) | 72 | 52 | 76 | 69 | 17 | 118 | 134 | 50 | 122 | 142 |
| 95th Queue (ft) | 134 | 102 | 146 | 127 | 47 | 234 | 251 | 102 | 252 | 274 |
| Link Distance (ft) | 768 |  | 755 |  |  | 1489 | 1489 |  | 1398 | 1398 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  | 100 |  | 100 | 150 |  |  | 150 |  |
| Storage Bay Dist (ft) |  | 1 | 6 | 4 |  | 4 |  | 0 | 3 |  |
| Storage Blk Time (\%) | 5 | 1 | 1 | 9 | 3 |  | 1 |  | 0 | 4 |
| Queuing Penalty (veh) | 5 | 1 | 9 |  |  |  |  |  |  |  |

Intersection: 14: Main Street (SR-36) \& Utah Avenue

| Movement | EB | EB | WB | WB | NB | NB | NB | NB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Sirections Served | L | TR | L | TR | L | T | T | R | L | T |
| Maximum Queue (ft) | 347 | 268 | 139 | 137 | 113 | 276 | 310 | 120 | 175 | 317 |
| Average Queue (ft) | 137 | 100 | 44 | 52 | 40 | 120 | 137 | 12 | 53 | 126 |
| 95th Queue (ft) | 260 | 193 | 108 | 103 | 84 | 223 | 248 | 62 | 115 | 261 |
| Link Distance (ft) | 4286 |  | 753 |  |  | 1259 | 1259 |  | 281 |  |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |  | 1489 |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) |  | 185 |  | 100 | 190 |  |  | 100 | 150 |  |
| Storage Blk Time (\%) | 5 | 1 | 2 | 2 |  | 1 | 14 |  | 0 | 4 |
| Queuing Penalty (veh) | 10 | 1 | 2 | 1 |  | 1 | 4 |  | 0 | 5 |

Intersection: 15: Main Street (SR-36) \& Vine Street

| Movement | EB | EB | WB | WB | WB | NB | NB | NB | SB | SB | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directions Served | L | TR | L | T | R | L | T | TR | L | T | TR |
| Maximum Queue (ft) | 264 | 195 | 174 | 136 | 124 | 66 | 178 | 189 | 68 | 152 | 167 |
| Average Queue (ft) | 107 | 76 | 63 | 37 | 61 | 24 | 81 | 87 | 22 | 54 | 66 |
| 95th Queue (ft) | 197 | 148 | 125 | 88 | 103 | 54 | 150 | 158 | 50 | 119 | 137 |
| Link Distance (ft) | 4281 |  | 759 |  |  |  | 3451 | 3451 |  | 1259 | 1259 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |  |  |  |
| Storage Bay Dist (ft) |  | 100 |  | 100 | 100 | 150 |  |  | 200 |  |  |
| Storage BIk Time (\%) | 15 | 6 | 2 | 1 | 2 |  | 1 |  |  | 0 |  |
| Queuing Penalty (veh) | 20 | 9 | 5 | 1 | 2 |  | 0 |  |  | 0 |  |

Intersection: 16: Main Street (SR-36) \& 520 South/Skyline Drive

| Movement | EB | WB | NB | NB | NB | SB | SB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | LTR | LTR | L | T | TR | L | T | TR |
| Maximum Queue (ft) | 54 | 356 | 24 | 5 | 2 | 101 | 18 | 10 |
| Average Queue (ft) | 16 | 133 | 3 | 0 | 0 | 40 | 1 | 0 |
| 95th Queue (ft) | 46 | 324 | 15 | 4 | 2 | 79 | 8 | 5 |
| Link Distance (ft) | 623 | 1201 |  | 4814 |  |  | 3451 | 3451 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  | 100 |  | 100 | 100 |  |  |
| Storage Bay Dist (ft) |  |  | 100 |  |  | 0 |  |  |
| Storage Blk Time (\%) |  |  |  |  |  | 0 |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |  |  |

## Intersection: 17: Main Street (SR-36) \& Commander Boulevard

| Movement | EB | EB | NE |
| :--- | ---: | ---: | ---: |
| Directions Served | L | R | L |
| Maximum Queue (ft) | 128 | 3 | 22 |
| Average Queue (ft) | 56 | 0 | 1 |
| 95th Queue (ft) | 102 | 3 | 11 |
| Link Distance (ft) | 1946 | 1946 |  |
| Upstream Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  | 500 |
| Storage Bay Dist (ft) |  |  |  |
| Storage Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  |  |

## Intersection: 18: Droubay Road \& 1000 North

| Movement | EB | NB |
| :--- | ---: | ---: |
| Directions Served | LR | LT |
| Maximum Queue (ft) | 101 | 53 |
| Average Queue (ft) | 52 | 14 |
| 95th Queue (ft) | 85 | 44 |
| Link Distance (ft) | 3797 | 168 |
| Upstream Blk Time (\%) |  |  |
| Queuing Penalty (veh) |  |  |
| Storage Bay Dist (ft) |  |  |
| Storage Blk Time (\%) |  |  |
| Queuing Penalty (veh) |  |  |

Intersection: 19: Droubay Road \& 970 North

| Movement | WB | SB |
| :--- | ---: | ---: |
| Directions Served | LR | LT |
| Maximum Queue (ft) | 47 | 59 |
| Average Queue (ft) | 17 | 9 |
| 95th Queue (ft) | 39 | 37 |
| Link Distance (ft) | 1895 | 168 |
| Upstream Blk Time (\%) |  |  |
| Queuing Penalty (veh) |  |  |
| Storage Bay Dist (ft) |  |  |
| Storage Blk Time (\%) |  |  |
| Queuing Penalty (veh) |  |  |

Intersection: 20: Droubay Road \& Smelter Road

| Movement | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Directions Served | LTR | LTR | LTR | LTR |
| Maximum Queue (ft) | 34 | 2 | 61 | 80 |
| Average Queue (ft) | 3 | 0 | 29 | 46 |
| 95th Queue (ft) | 21 | 2 | 50 | 71 |
| Link Distance (ft) | 1500 | 1673 | 1053 | 3657 |
| Upstream Blk Time (\%) |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |
| Storage Bay Dist (ft) |  |  |  |  |
| Storage Blk Time (\%) |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |

Intersection: 21: Coleman Street \& Utah Avenue

| Movement | EB | EB | WB | NB | NB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | L | TR | L | L | TR | LTR |
| Maximum Queue (ft) | 28 | 18 | 49 | 67 | 81 | 71 |
| Average Queue (ft) | 4 | 1 | 17 | 25 | 39 | 28 |
| 95th Queue (ft) | 20 | 8 | 44 | 56 | 68 | 54 |
| Link Distance (ft) | 911 |  | 4286 | 1282 |  | 1033 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |
| Queuing Penalty (veh) |  |  |  |  |  |  |
| Storage Bay Dist (ft) |  | 110 |  | 0 | 70 |  |
| Storage Blk Time (\%) |  |  |  | 0 | 1 |  |
| Queuing Penalty (veh) |  |  |  | 0 | 0 |  |

Intersection: 22: Coleman Street \& Vine Street

| Movement | EB | EB | WB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Directions Served | LT | R | LT | R | LTR | LTR |
| Maximum Queue (ft) | 18 | 2 | 53 | 4 | 96 | 68 |
| Average Queue (ft) | 1 | 0 | 9 | 0 | 45 | 34 |
| 95th Queue (ft) | 9 | 2 | 35 | 4 | 77 | 57 |
| Link Distance (ft) | 1091 |  | 4281 |  | 1055 | 1282 |
| Upstream Blk Time (\%) |  |  |  |  |  |  |
| Queuing Penalty (veh) |  | 100 |  | 100 |  |  |
| Storage Bay Dist (ft) |  |  |  |  |  |  |
| Storage Blk Time (\%) |  |  |  |  |  |  |

Intersection: 39: Broadway Avenue \& 1000 North

| EB | WB | NB |  |
| :--- | ---: | ---: | ---: |
| Movement | TR | LT | LR |
| Directions Served | 9 | 94 | 102 |
| Maximum Queue (ft) | 0 | 14 | 49 |
| Average Queue (ft) | 5 | 56 | 81 |
| 95th Queue (ft) | 1917 | 3797 | 2171 |
| Link Distance (ft) |  |  |  |
| Upstream Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  |  |
| Storage Bay Dist (ft) |  |  |  |
| Storage Blk Time (\%) |  |  |  |
| Queuing Penalty (veh) |  |  |  |

## Zone Summary

Zone wide Queuing Penalty: 1404


Project: Tooele City Transportation Master Plan
Analysis: Existing (2020) Background
Time Period: Evening Peak Hour
$95^{\text {th }}$ Percentile Queue Length (feet)

HALES $\$ ENGINEERING innovative transportation solutions

| Intersection | NB |  |  |  |  |  |  | NE |  |  | SB |  |  |  |  |  | EB |  |  |  |  |  |  | WB |  |  |  |  |  |  |  | $\begin{gathered} \hline \text { B3 } \\ 3 \\ \hline \text { T } \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{B} 3 \\ 7 \\ \hline \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | LR | LT | LTR | R | T | TR | $\geq$ | L | R | L | LT | LTR | R | T | TR | L | LR | LT | LTR | R | T | TR | < | L | LR | LT | LTR | R | T | TR |  |  |
| 1: Main Street (SR-36) \& 2400 North | 73 | -- | -- | -- | 9 | 47 | -- | -- | -- | -- | 50 | -- | -- | 27 | 223 | -- | 89 | -- | -- | -- | 63 | 29 | -- | -- | 157 | -- | -- | -- | -- | 26 | -- | -- |  |
| 10: 600 West \& 1000 North (SR-112) | -- | -- | -- | 49 | -- | -- | -- | -- | -- | -- | -- | -- | 84 | -- | -- | -- | 37 | -- | -- | -- | -- | -- | -- | -- | 28 | -- | -- | -- | -- | -- | 2 | -- |  |
| 11: Industrial Loop Road \& Utah Avenue | 18 | -- | -- | -- | 41 | 105 | -- | 34 | 69 | 98 | 150 | -- | -- | 18 | 97 | -- | -- | -- | -- | -- | -- | -- | -- | 110 | 61 | -- | -- | -- | 86 | -- | -- | -- |  |
| 12: Main Street (SR-36) \& 600 North | 64 | -- | -- | -- | -- | 111 | 125 | -- | -- | -- | 70 | -- | -- | -- | 164 | 174 | -- | -- | -- | 134 | -- | -- | -- | -- | -- | -- | -- | 91 | -- | -- | -- | -- |  |
| 13: Main Street (SR-36) \& 400 North | 47 | -- | -- | -- | -- | 234 | 251 | -- | -- | -- | 102 | -- | -- | -- | 252 | 274 | 134 | -- | -- | -- | -- | -- | 102 | -- | 146 | -- | -- | -- | -- | -- | 127 | -- |  |
| 14: Main Street (SR-36) \& Utah Avenue | 84 | -- | -- | -- | 62 | 236 | -- | -- | -- | -- | 115 | -- | -- | -- | 261 | 281 | 260 | -- | -- | -- | -- | -- | 193 | -- | 108 | -- | -- | -- | -- | -- | 103 | -- |  |
| 15: Main Street (SR-36) \& Vine Street | 54 | -- | -- | -- | -- | 150 | 158 | -- | -- | -- | 50 | -- | -- | -- | 119 | 137 | 197 | -- | -- | -- | -- | -- | 148 | -- | 125 | -- | -- | -- | 103 | 88 | -- | -- |  |
| 16: Main Street (SR-36) \& 520 South/Skyline Drive | 15 | -- | -- | -- | -- | 4 | 2 | -- | -- | -- | 79 | -- | -- | -- | 8 | 5 | -- | -- | -- | 46 | -- | -- | -- | -- | -- | -- | -- | 324 | -- | -- | -- | -- |  |
| 17: Main Street (SR-36) \& Commander Boulevard | -- | -- | -- | -- | -- | -- | -- | -- | 11 | -- | -- | -- | -- | -- | -- | -- | 102 | -- | -- | -- | 3 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |  |
| 18: Droubay Road \& 1000 North | -- | -- | 44 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 85 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |  |
| 19: Droubay Road \& 970 North | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 37 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 39 | -- | -- | -- | -- | -- | -- |  |
| 2: Main Street (SR-36) \& 2200 North | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 4 | -- | -- | -- | -- | 89 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 2 |  |
| 20: Droubay Road \& Smelter Road | -- | -- | -- | 50 | -- | -- | -- | -- | -- | -- | -- | -- | 71 | -- | -- | -- | -- | -- | -- | 21 | -- | -- | -- | -- | -- | -- | -- | 2 | -- | -- | -- | -- |  |
| 21: Coleman Street \& Utah Avenue | 56 | -- | -- | -- | -- | -- | 68 | -- | -- | -- | -- | -- | 54 | -- | -- | -- | 20 | -- | -- | -- | -- | -- | 8 | -- | 44 | -- | -- | -- | -- | -- | -- | -- |  |
| 22: Coleman Street \& Vine Street | -- | -- | -- | 77 | -- | -- | -- | -- | -- | -- | -- | -- | 57 | -- | -- | -- | -- | -- | 9 | -- | 2 | -- | -- | -- | -- | -- | 35 | -- | 4 | -- | -- | -- |  |
| 23: Broadway Avenue \& 1000 North | -- | 81 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 5 | -- | -- | -- | 56 | -- | -- | -- | -- | -- |  |
| 3: Main Street (SR-36) \& 2000 North | 174 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 61 | 310 | -- | 157 | -- | -- | -- | 226 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |  |
| 4: Aaron Drive/Hospital Access \& 2000 North | -- | -- | -- | 79 | -- | -- | -- | -- | -- | -- | 47 | -- | -- | -- | -- | 29 | 8 | -- | -- | -- | -- | -- | 2 | -- | 53 | -- | -- | -- | -- | 23 | -- | -- |  |
| 5: Berra Boulevard \& 2000 North | -- | -- | -- | 31 | -- | -- | -- | -- | -- | -- | -- | -- | 28 | -- | -- | -- | -- | -- | -- | 34 | -- | -- | -- | -- | -- | -- | -- | 22 | -- | -- | -- | -- |  |
| 6: 400 West \& 2000 North | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 4 | -- | -- | -- | -- | -- | -- | -- | -- | 19 | -- | -- | -- | -- | 52 | -- | -- | -- | -- | -- | 25 | -- |  |
| 7: Main Street (SR-36) \& 1280 North | 192 | -- | -- | -- | -- | 208 | 211 | -- | -- | -- | 138 | -- | -- | 180 | 359 | -- | 143 | -- | -- | -- | 276 | 569 | -- | -- | 224 | -- | -- | -- | -- | -- | 169 | -- |  |
| 8: Main Street (SR-36) \& 1000 North (SR-112)/1000 North | 394 | -- | -- | -- | 308 | 548 | -- | -- | -- | -- | 479 | -- | -- | 215 | 1,556 | -- | 390 | -- | -- | -- | -- | -- | 652 | -- | 280 | -- | -- | -- | 145 | 338 | -- | -- |  |
| 9: 200 West \& 1000 North (SR-112) | 85 | -- | -- | -- | -- | -- | 114 | -- | -- | -- | 140 | -- | -- | -- | -- | 182 | 120 | -- | -- | -- | -- | -- | 118 | -- | 131 | -- | -- | -- | -- | -- | 122 | -- | -- |

TOOELE CITY
TRANSPORTATION MASTER PLAN

## APPENDIX C: Hales Engineering

## FIRM DESCRIPTION

Hales Engineering specializes in providing transportation planning and traffic engineering services to clients in the public and private sectors. Importance is placed on developing creative, cost-effective, and technically sound solutions to planning and design problems associated with all modes of transportation.

Over the last 23 years the professional staff has developed a considerable reputation in the transportation planning and traffic engineering field. Our commitment to quality and personal service is evidenced in our considerable number of repeat clients. The many transportation developments planned and evaluated by our company are further testimony to the creative talent, extensive practical experience, and consensus-building ability of our staff. We are presently assisting clients throughout Utah, Idaho, and Nevada.

Typical projects range from regional multi-modal transportation plans, corridor studies and parking evaluation / studies, to traffic engineering, signal coordination, bicycle and pedestrian planning projects. Many of these projects involve multi-disciplinary teams of engineers, planners, and environmental scientists. These projects have also included extensive interagency coordination and public participation. Our specialty services include the following specific disciplines:

- Parking Studies
- Transportation Master Plans
- Traffic Simulation
- Signing and Striping Plans
- Circulation Studies
- Traffic Signal Timing Studies
- Intersection Capacity Analysis
- Transit Planning
- Safety Studies
- Transportation Systems Management
- Transportation Policy Analysis
- Traffic Calming
- Hospital/University Studies
- Operational Analysis
- Corridor Studies
- Neo-traditional Neighborhood Planning
- Smart Growth
- Pedestrian/Bicycle Planning


## PROJECT TEAM



## Ryan Hales, PE, PTOE, AICP Principal / Owner



## CERTIFICATION

- Professional Engineer, State of Utah (295669), State of Idaho (3530)
- Professional Planner, AICP (017265)
- Professional Traffic Operations Engineer, PTOE (1249)


## EDUCATION

- M.S. in Civil Engineering, Brigham Young University, Provo, Utah, 1996
- B.S. in Civil Engineering, Brigham Young University, Provo, Utah, 1996


## EXPERIENCE

## Transportation Planning

Project manager/engineer for numerous studies involving transportation and land use planning, transportation master plans (20), trip generation and assignment applications, transportation corridor evaluations, and area-wide travel demand forecasting.

Representative projects include:

- Lehi City Transportation Master Plan, Utah
- Bluffdale City Transportation Master Plan, Utah
- South Jordan Transportation Master Plan, Utah
- Provo City Transportation Master Plan, Utah
- American Fork City Sub-Area Transportation Plan, Utah
- Weber County Transportation Master Plan, Utah


## Local Government Experience

Ryan completed a three-year appointment as a Planning Commissioner where he gained valuable first-hand knowledge of local government concerns/needs in relation to the growing multi-modal aspects of future transportation demand. Based on his experience he continues to support several cities within Utah and Idaho with on-call services for various transportation-related planning needs.

## Parking Analyses

Early in his career as an engineer / planner he recognized the key role that parking analyses played in the land development arena and wanted to minimize the parking ratios and the prohibitive cost of parking garages / lots through reducing parking supply to meet the actual demand. Hales Engineering has also conducted parking analyses for many standalone townhomes and apartments within the Wasatch Front and has compiled a small library of these different studies.

## AFFILIATIONS

- Institute of Transportation Engineers (ITE)
- American Society of Civil Engineers (ASCE)
- American Planning Association (APA)
- Former Lehi City Planning Commissioner


## SOFTWARE

Proficient in the use of:

- Highway Capacity Software (HCS)
- Synchro / SimTraffic
- CORSIM
- VISSIM


## Josh Gibbons, EIT Transportation Engineer



## CERTIFICATION

- Engineer in Training (EIT)


## EDUCATION

- M.S. in Civil Engineering, Brigham Young University, Provo, Utah, 2018
- B.S. in Civil Engineering, Brigham Young University, Provo, Utah, 2017


## EXPERIENCE

## Transportation Planning

Assisted with several projects involving transportation planning and travel demand forecasting. Project engineer for numerous projects including:

- South Jordan Transportation Master Plan
- Bluffdale Transportation Master Plan
- Twin Falls Transportation Master Plan
- Wasatch County Parking and Traffic Data Collection
- Nephi Sub-Area Transportation Master Plan
- BYU Campus Transportation Demand Management
- Sandy Rio Tinto Stadium Parking Management Plan


## Traffic Engineering

Conducted numerous traffic studies and trip generation studies for private and public entities. Project engineer for numerous projects including:

- Salt Lake County Olympia Hills Traffic Impact Study
- Downtown Vineyard TOD Traffic Impact Study
- Salt Palace Convention Center Hotel Traffic Study
- UDOT Richfield SR-120 Signal Study
- Midvale Jordan Bluffs / View 78 Traffic Impact Studies
- Wasatch County Mayflower Traffic Study
- UDOT US-191 Intersection Upgrades in Blanding
- Murray 53 ${ }^{\text {rd }}$ Corporate Park Traffic Impact Study
- UDOT Traffic Studies Consultant


## School Transportation Planning and Analysis

Project engineer for several traffic pedestrian planning and operations analysis projects. Representative projects include:

- Alpine School District Crosswalk Studies
- Bluffdale Rectangular Rapid Flash Beacon (RRFB) Concept Designs
- Weber State Student Housing Pedestrian Study
- BYU Pedestrian Studies


## AFFILIATIONS

- Institute of Transportation Engineers (ITE)
- American Society of Civil Engineers (ASCE)


## VOLUNTEER

- Former President of BYU ITE chapter.
- Led efforts in BYU ITE traffic data collection projects.


## SOFTWARE

Proficient in the use of:

- Synchro / SimTraffic
- VISSIM
- Highway Capacity Software
- ArcGIS Pro
- Bluebeam Revu
- Microsoft Excel / Visual Basic
- WIX Web Development


## Joseph Browning, EIT <br> Transportation Engineer



## CERTIFICATION

- Engineer in Training (EIT)


## EDUCATION

- M.S. in Civil Engineering, Brigham Young University, Provo, Utah, 2019
- B.S. in Civil Engineering, Brigham Young University, Provo, Utah, 2017


## EXPERIENCE

## Traffic Engineering

Conducted numerous traffic studies and trip generation studies for private and public entities. Project engineer for numerous projects including:

- Lehi Thanksgiving Point Area Plan
- Clearfield STACK TOD Traffic Impact Study
- Farmington STACK TOD Traffic Impact Study
- Sandy La Caille Traffic Study
- Provo Sports Complex Traffic Study
- Salt Lake City Foothill Village Shopping Center Traffic Impact Study
- Lehi Innovation Pointe Traffic Impact Study
- Midway The Homestead Resort Traffic Impact Study
- Magna Maverik 8000 West SR-201 Traffic Impact Study
- Saratoga Springs The Crossing Phase III Traffic Impact Study
- Grantsville Presidents Park PUD Traffic Impact Study
- American Fork Rockwell Ranch Traffic Impact Study
- Payson 600 East \& S.R. 198 Road Safety Audit Traffic Study
- UDOT Traffic Studies Consultant


## AFFILIATIONS

- Institute of Transportation Engineers (ITE)


## VOLUNTEER

- Former President of BYU AREMA chapter.


## SOFTWARE

Proficient in the use of:

- Synchro / SimTraffic
- Highway Capacity Software
- ArcGIS Pro
- Bluebeam Revu
- Civil 3D

